期刊文献+

基于改进优先级的自适应图像修复算法 被引量:3

Adaptive image inpainting algorithm with modified priority
下载PDF
导出
摘要 文章基于Criminisi算法,提出了改进优先级的自适应样本块匹配算法,在Criminisi算法的优先级中增加了信息项,使图像的修复顺序更加合理;针对以往修复图像时样本块大小固定不变,造成图像的不合理结构累积,部分区域的局部结构丢失等不足,提出一种改进的自适应样本块匹配方法,其核心思想是通过局部结构特征,确定修复样本块大小。实验结果表明,所提算法对许多图像都能取得较好的修复效果。 In this paper ,an adaptive sample patch matching algorithm with a modified priority is given based on the Criminisi algorithm .An information term is added to the priority in Criminisi algorithm to make the image inpainting order more reasonable .In addition ,for avoiding the problem that the sample patch size of previous restoration is fixed ,which will cause the accumulation of irrational structure of the image and the loss of the local structure of some region ,an improved adaptive sample patch matching method is given to determine the sample patch size by local structure features .Experi-mental results show that the algorithm given in the paper has good inpainting results .
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期683-689,共7页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61272024) 第38批留学回国人员科研启动基金资助项目(2010JYLH0322) 安徽省自然科学基金资助项目(11040606M06)
关键词 图像修复 优先级 信息项 结构特征 自适应 image inpainting priority information term structure feature self-adaptation
  • 相关文献

参考文献17

  • 1张红英,彭启琮.数字图像修复技术综述[J].中国图象图形学报,2007,12(1):1-10. 被引量:160
  • 2Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting [C]//Proceedings of International Conference on Computer Graphics and Interactive Techniques, New Orleans, Louisi- ana, USA, 2000 : 417 -424.
  • 3Chan T F, Shen J. Mathematical models for local nontexture inpaintings [J]. SIAM Journal on Applied Math, 2001, 62 (3) :1019- 1043.
  • 4Chan T F, Shen J. Non-texture inpainting by curvature-driv- en diffusions (CDD)[J]. Journal of Visual Communicationand Image Representation, 2001,12 (4) : 436- 449.
  • 5邵肖伟,刘政凯,宋璧.一种基于TV模型的自适应图像修复方法[J].电路与系统学报,2004,9(2):113-117. 被引量:52
  • 6Chan R H,Wen Y W,Yip A M. A fast optimization transfer algorithm for image inpainting in wavelet domains[J]. IEEE Transactions on Image Processing, 2009, 18 (7) : 1467-1476.
  • 7Criminisi A, Perez P, Toyama K. Object removal by exem- plar-based inpainting [C]//Proeeedings of IEEE Computer Society Conference on Computer Vision and Pattern Recog- nition, 2003 : 721 - 728.
  • 8Criminisi A, Perez P, Toyama K. Region filling and object removal by exemplar-based image inpainting [J]. IEEE Transactions on Image Processing, 2004, 13 (9) : 1200-1212.
  • 9Tang F,Ying Y T,Wang J,et a. A novel texture synthesis based algorithm for object removal in photographs [C]// Advances in Computer Science: ASIAN, 2004. Berlin: SDriner, 2005 : 248- 258.
  • 10Wong A, Orchard J. A noniocal-means approach to exemplar- based inpaintirag[C]//Image Proceeding, 2008, ICIP 2008, 15th IEEE International Conference on, 2008:2600-2603.

二级参考文献64

  • 1屈磊,韦穗,梁栋,王年.快速自适应模板图像修复算法[J].中国图象图形学报,2008,13(1):24-28. 被引量:13
  • 2王树根,郑精灵.基于纹理匹配的影像缺损信息填充方法[J].测绘通报,2004(12):21-23. 被引量:11
  • 3薛峰,张佑生,江巨浪,胡敏.一种快速、有效的纹理合成方法[J].合肥工业大学学报(自然科学版),2005,28(11):1361-1364. 被引量:6
  • 4[1]Chan T, Shen F. Mathematical Models for Local Non-texture Inpaintings [J]. SIAM Journal on Applied Mathematics, 2002, 62: 1019-1043.
  • 5[2]Bertalmio M, et al. Image Inpainting [A]. SIGGRAPH [C]. 2000, 1: 417-424.
  • 6[3]Criminisi A, Perez P, Toyama K. Object Removal by Exemplar-Based Inpainting [J]. IEEE Proc. CVPR, 2003, 2: 721-728.
  • 7[4]Masnou S. Disocclusion: A Variational Approach Using Level Lines [J]. IEEE Trans. Image Processing, 2002, 11: 68-76.
  • 8[5]Masnou S, Morel J. Level Lines Based Disocclusion [A]. IEEE Proc. ICIP [C]. 1998, 3: 259-263.
  • 9[6]Levin A, Zomet A, Weiss Y. Learning How to Inpaint from Global Image Statistics [A]. International Conference on Computer Vision [C]. 2003, 1: 305-312.
  • 10Efros A,Leung T.Texture synthesis by non-parametric sampling[C]//Proc Int Conf Computer Vision,Kerkyra Greece,September,1999:1033-1038.

共引文献232

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部