摘要
对解m维Stiff常徽分方程初值问题提出了可高度并行计算的r-点r+3阶A-稳定和r-点r+2阶L-稳定的两类隐式单块混合法,由此两类方法所导出的方程组可用“完全平方”迭代法解之,如使用r个处理机并行计算,则每个处理机上的LU-分解运算量为m3/3+O(m2),文未给出了算例。
For the initial value problems of the stiff systems of m-dimensional ordinary differential equations, this paper presents two classes of implicit one-block hybrid methods with highly parallelism, in which,one class is r-point (r+3)-order A-stable methods, the other class is r-point (r+2)-order L-stable methods. For the equation systems produced by the two classes of methods, we use complete square iterative method to solve them. If parallel computer systems with r processors are used, then LU-decomposition operation amount is m3/3+O(m2) on each processor.The end in the paper gives numerical examples.
出处
《系统仿真学报》
CAS
CSCD
2001年第1期78-82,共5页
Journal of System Simulation
基金
国家自然基金资助项目!(19671039)
关键词
Stiff常微分方程
隐式单块混合法
初值
数值解
stiff system of ordinary differential equation
implicit one-block hybrid method
A-stability
L-stability
complete square iterative method