期刊文献+

过冷Ti-46Al-7Nb亚包晶合金的相选择 被引量:2

Phase selection for undercooled Ti-46Al-7Nb hypo-peritectic alloy
下载PDF
导出
摘要 采用电磁悬浮方法,通过原位观察再辉曲线进行过冷Ti-46Al-7Nb亚包晶合金的快速凝固研究,获得的最大过冷度为240 K。在一定过冷度下对悬浮的熔体进行铜基底悬淬,进而对凝固合金的微观组织进行分析。超过一定的临界过冷度(ΔT*=205 K),凝固模式将从具有包晶转变特征向包晶转变被抑制转化。当熔体初始过冷度ΔT≤ΔT*时,遵循包晶合金的典型凝固规律,β相作为初生相析出,在随后的冷却过程中包晶相α以包晶反应、包晶转变的方式析出。当ΔT>ΔT*时,β相直接凝固,包晶相α的析出被抑制。包晶反应能否发生取决于包晶相α的孕育时间τP与再辉后熔体完全β相凝固所需的时间tβ的相对大小。当过冷度相差不大时,通过改变凝固过程的冷速,组织中获得β相向α"相的马氏体转变。 The rapid solidification of undercooled Ti-46Al-7Nb alloy was investigated by in situ observation of recalescence events during electromagnetic levitation. A maximum melt undercooling up to 240 K has been achieved. Levitated drops of controlled undercooling were quenched onto chill copper substrate and subjected to phase and microstructure analysis. Beyond a critical undercooling of 205 K, solidification mode changes from peritectic transformation into suppression of peritectic transformation. When the intial undercooling (ΔT) is lower than a critical value (ΔT*), the solidification follows a typical manner of peritectic alloys, i.e.βphase solidifies as primary phase, after which, peritectic α phase forms through peritectic growth which is controlled by peritectic reaction, peritectic transformation. IfΔT〉ΔT*, the formation of peritecticαphase will be suppressed, and the solidification of singleβphase will prevail.This phenomenon can be explained by comparing the relationship between incubation time for peritectic reaction (τP) and post-recalescence time corresponding to pure β phase solidification (tβ).When the undercooling is no different,microstructure can obtain theβ/α" martensitic transformation by changing the cooling rate.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2014年第3期355-360,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家重点基础研究发展规划(973计划)资助项目(2011CB610404)
关键词 亚包晶合金 临界过冷度 显微组织 hypo-peritectic alloy critical undercooling microstructure
  • 相关文献

参考文献19

  • 1KERR H W, KURZ W. Solidification of peritectic alloys [J]. International Materials Reviews, 1996, 41(4): 129-164.
  • 2陶辉锦,彭坤,谢佑卿,贺跃辉,尹志民.Ti-Al金属间化合物脆性问题的研究进展[J].粉末冶金材料科学与工程,2007,12(6):330-336. 被引量:24
  • 3LIN J P, ZHAO L L, LI G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131-136.
  • 4PALM M, ENGBERDING N, evolution of microstructures STEIN F, et al. Phases and in Ti-60at.% Al [J]. Acta Materialia, 2012, 60: 3559-3569.
  • 5QU H P, WANG H M. Microstructure and mechanical properties of laser melting deposited γ-TiAl intermetallic alloys [J]. Materials Science and Engineering A, 2007, 466: 187-194.
  • 6LIU Z G, CHAI L H, CHEN Y Y. Effect of cooling rate and Y element on the microstructure of rapidly solidified TiAI alloys [J]. Journal of Alloys and Compounds, 2010, 504S: S491-S495.
  • 7SHULESHOVA O, HOLLAND-MORITZ D, LINDENKREUZ H G, et al. Phase selection in undercooled Ti-Al-Nb melts [J]. Journal of Physics: Conference. Series, 2009, 144:012118.
  • 8HARTMANN H, GALENKO P K, HOLLAND-MORITZ D, et al. Nonequilibrium solidification in undercooled Ti45Al55 melts [J]. Journal of Applied Physics, 2008, 103: 073509.
  • 9LOSER W, LINDENKREUZ H G, HERMANN R, et al. Recalescence behaviour of binary Ti-Al and ternary Ti-Al-Nb undereooled melts [J]. Materials Science and Engineering A, 2005, 413/414:398-402.
  • 10SHULESHOVA O, WOODCOCK T G, LINDENKREUZ H G, et al. Metastable phase formation in Ti-Al-Nb undercooled melts [J]. Acta Materialia, 2007, 55:681-689.

二级参考文献41

  • 1[40]KAWABATA T,TADANO M,IZUMI O.Effect of purity and second phase on ductility of TiAl[J].Scripta Metallurgica,1988,22(11):1725-1730.
  • 2[43]HALL E L,HUANG S C.Stoichiometry effects on the deformation of binary TiAl alloys[J].Journal of Materials Research,1989,4(3):595
  • 3[46]KAWABATA T,TAKEZONO Y,KANAI T,et al.Bend test and fracture mechanism of TiAl single crystala at 293-1 073 K[J].Acta Metallurgica et Materialia,1988,36(4):963-975.
  • 4[47]GREENBERG B A,ANTONOVA O V.Dislocation transformations and the anomalies of deformation characteristics in TiAl-Ⅰ Models of dislocation blocking[J].Acta Metallurgica et Materialia,1991,39(2):233-242.
  • 5[48]ANISIMOV V I,GANIN G V,GALAKHOV V R,et al.Electronic structure and atomic ordering of alloy TiAl:LMTO and coherent potential calculations[J].The Physics of Metals and Metallography,1987,63(2):192-194.
  • 6[49]FU C L,YOO M H.Elastic constants,fault energies,and dislocation reactions in TiAl:A first-principles total-energy investigation[J].Philosophical Magazine Letters,990,62(3):159-165.
  • 7[50]WOODWARD C,MACLAREN J M,RAO S,et al.Electronic structure of planar faults in TiAl[J].Journal of Materials Research,1992,7(7):1735-1750.
  • 8[51]LU Z W,ZUNGER A.Comparison of experimental and theoretical electronic charge distributions in γ-TiAl[J].Acta Metallurgica et Materialia,1994,42(12):3929-3943.
  • 9[52]XIE You-qing,PENG Kun,LIU Xin-bi.Influences of x(Ti)/x(Al)on atomic states,lattice constants and potential-energy planes of ordered FCC TiAl-type alloys[J].Physica B,2004,344:5-20.
  • 10[53]COURT S A,VASUDERAN V K,FRASER H L.Deformation mechanisms in the intermetallic compound TiAl[J].Philosophy Magazine A,1990,61(1):141-158.

共引文献23

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部