期刊文献+

回火温度对铁基合金组织与力学性能的影响 被引量:3

Effect of tempering temperature on microstructure and mechanical properties of iron-base alloy
下载PDF
导出
摘要 将真空烧结的铁基合金奥氏体化、油淬后,在600~700℃温度下进行回火处理,保温1 h,空冷。测试回火后合金的硬度和冲击韧性,并用金相显微镜、X 射线衍射(XRD)、扫描电镜(SEM)观察和分析合金的组织、结构与断口形貌,研究回火温度对铁基合金组织与力学性能的影响。结果表明:随回火温度升高,第二相碳化物粒子M23C6的含量(质量分数)基本保持不变,约为3.5%;碳化物M6C的数量大幅减少,平均尺寸明显减小,碳化物M6C的第二相强化效果降低,硬度下降,同时基体组织软化,冲击吸收功增大。回火温度为675℃时,铁基合金保持较高的硬度40 HRC,冲击韧性较回火前提高11%。回火处理后的铁基合金断口形貌为典型的沿晶断裂。 Vacuum sintering iron-base alloy was tempered in the temperature range of 600~700℃for 1 h following by air cooling after austenitizing and oil quenching. Hardness and impact toughness were tested at different tempering temperature. Microstructure and fracture morphology examination were conducted by optical microscope, X-ray diffraction, scanning electron microscope and energy disperse spectroscopy. The results show that the mass fraction of the second phase carbide M23C6 remains fairly static about 3.5%. The amount of carbide particles M6C decreases sharply and the average size of M6C refines obviously. The effects of second phase strengthening of carbide particles M6C turn deteriorated, a decreasing on hardness occurs with increasing the tempering temperature, while the matrix structure is softened, an increasing on impact toughness also happens with increasing the tempering temperature. When the tempering temperature is 675℃, the iron-base alloy presents hardness of 40 HRC, and impact toughness is increased by 11%. The fracture surface of the iron-base alloy is a typical intercrystalline fracture.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2014年第3期427-432,共6页 Materials Science and Engineering of Powder Metallurgy
关键词 铁基合金 回火温度 第二相粒子 断口分析 iron-base alloy tempering temperature the second phase particle fracture analysis
  • 相关文献

参考文献8

二级参考文献48

  • 1沈宝龙,金家敏,吴菊清.内燃机粉末冶金阀座材料的发展概况[J].粉末冶金技术,1993,11(4):298-304. 被引量:7
  • 2李绍忠.无铅汽油发动机高性能烧结合金钢气门座的研制[J].粉末冶金工业,1994,4(1):24-27. 被引量:3
  • 3郝志坚.高铬耐磨铸件[M].北京:煤炭工业出版社,1993.233-237.
  • 4韩凤麟.粉末冶金模具模架实用手册[M].北京:冶金工业出版社,1999.146-148.
  • 5陈信政.汽车引擎之汽门座的粉末冶金制程[J].粉末冶金会刊,1994,19(1):18-33.
  • 6[4]Bolton J. Modern development in sintered high speed steels[J]. MPR, 1996, 51(2): 33-36.
  • 7[5]Seung-chul Yoo, Ju Chol, In-Hyung Moon. Sintering and properties of high carbon and Mo-alloyed P/M steel[J], Powder Metallurgy International, 1991, 23(4): 216.
  • 8[6]Hanata K, Sakai M, Shigeeda T. Development of high-performance valve seat material for diesel engine[A]. Proceedings of 2000 Powder Metallurgy World Congress[C]. Kyoto: Koji Kosuge, Hiroshi Nagai, 2000. 1151-1154.
  • 9[8]Nakata T, Hayasaka T, Endoh H, et al. Sintered materials with new concept for valve seats with and without cobalt[J]. Metal Powder Report, 1981, 36(10): 487-490.
  • 10[9]Wright C S, Wronski A S, Iturriza I. Development of robust processing routes for powder metallurgy high speed steel[J]. Material Science and Technology, 2000, 16(9): 945-957.

共引文献113

同被引文献54

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部