期刊文献+

柱坐标声波方程正演两种PML边界加载方式的对比

Comparation of the Two PML Boundary Conditions for Acoustic Wave Modeling in Cylindrical Coordinates
下载PDF
导出
摘要 分析了地震波场模拟中直角坐标系下一阶声压速度方程完全匹配层边界的两种不同的添加方式,讨论了其等价性。进而针对柱坐标系下一阶声压速度方程的特殊形式,推导出在柱坐标系下进行波场模拟的完全匹配层边界的特殊形式,指出柱坐标一阶方程中两种完全匹配层添加方式的不等价性。最后通过数值试验对两种不同的边界条件的实际应用效果进行了比较,结果表明变量复值化这一吸收边界实现方式在相同参数设置下的实际应用效果要优于直接引入衰减系数。 Two implementation approaches of perfectly matched layer (PML) boundary conditions for pressure velocity equation modeling are proved to be equivalent in Cartesian coordinates. According to the particularity of acoustic equation in cylindrical coordinates, PML boundary conditions are then derived into two different formulas in two implementation ways and two different algorithms are presented for acoustic equation modeling in cylindrical coordinates. Numerical simulations are used to compare the practical performances of the two formulas, which indi- cate that the two approaches are in-equivalent. The way of using complex variables shows better behavior than that using direct damping term under the same conditions.
作者 郭锐 王尚旭
出处 《科学技术与工程》 北大核心 2014年第17期161-164,共4页 Science Technology and Engineering
关键词 地震波场模拟 声压速度方程 柱坐标系 完全匹配层 seismic wave modeling pressure velocity equation cylindrical coordinates perfectlymatched layer
  • 相关文献

参考文献5

二级参考文献28

  • 1董良国,李培明.地震波传播数值模拟中的频散问题[J].天然气工业,2004,24(6):53-56. 被引量:54
  • 2黄自萍,张铭,吴文青,董良国.弹性波传播数值模拟的区域分裂法[J].地球物理学报,2004,47(6):1094-1100. 被引量:26
  • 3Kosloff D, Kessler D,Filho A Q, et al. Solution of the equations of dynamic elasticity by a Chebychev spectral method[J]. Geophysics, 1990, 55(6):734-748.
  • 4Bayliss A, Jordan K E. A fourth-order accurate finitedifference scheme for the computation of elastic waves[J]. The Bulletion of the Seismological Society of America, 1986, 76(4): 1115-1132.
  • 5Levander A R. Four-order finite-difference P-SV seismograms[J]. Geophysics, 1988,53(11):1425-1436.
  • 6Carcione J M, Kosloff D, Kosloff tL Wave propagation simulation in a linear viscoacoustic medium [J]. Geophysical Journal of the Royal Astronomical Society,1988,95:597-611.
  • 7Carcione J M. Seismic modeling in viscoelastic media[J]. Geophysics, 1993, 58(1): 110-120.
  • 8Bouchon M, Sehultz C A, Toksoz M N. A fast implementation of boundary integral equation methods to calculate the propagation of seismic waves in laterally varying layered media[J]. The Bulletin of the Seismological Society of America, 1995,85(6):1679-1687.
  • 9Robertsson J O A. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography[J]. Geophysics, 1996,61(6):1921-1934.
  • 10Tessmer E, Kosloff D, 13ehle A. Elastic wave propagation in the presence of surface topography[J]. Geophysical Journal International, 1992,108:621-632.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部