期刊文献+

当量比对稻草固定床气化性能的影响 被引量:2

Effect of Equivalence Ratio on Gasification Characteristics in a Rice Straw Fixed Bed Gasifier
下载PDF
导出
摘要 为了合理利用大量的农林废弃物资源,减少秸秆燃烧造成的温室效应和环境污染,利用自制的气、固、液多联产固定床气化炉对稻草进行气化。研究了当量比对气化炉主要性能参数的影响。结果表明:当量比为0.25时,气化效果较好,此时气化温度为800—850℃,气化气热值达到2.84MJ·Nm^-3,气体得率为1.2m^3·kg^-1,稻草炭得率为24.94%,提取液得率为22.43%,碳转化率为35.31%,冷气效率为24.61%。稻草气化多联产工艺试验为工程化实施提供了基础和基本数据。 In order to take advantage of the large quantity of agriculture and forestry waste biological resources, and reduce greenhouse effect and environmental pollution caused by combustion of rice straw, the rice straw was gasified using homemade poly-generation fixed bed gasifier. The influence of equivalence ratio (ER) on gasification performance was researched. The results showed that under the experimental condition, the best value of ER was 0. 25, the gasification temperature was 800 - 850 ℃, the calorific value of product gas could reach 2. 84 MJ · Nm^-3, the yield of product gas, rice straw carbon and pyrolysis extract liquid was 1.2 m^3 · kg^-1, 24. 94% and 22. 43%, respectively. Carbon conversion efficiency was 35.31%, and cold gas efficiency was 24. 61%. Rice Straw gasification of poly-generation process experiment can provide a theoretical basis for engineering implementation.
出处 《科学技术与工程》 北大核心 2014年第17期201-205,共5页 Science Technology and Engineering
基金 国家重点基础研究发展计划(973)项目(2010CB732205) 林业公益性行业科研专项项目(201304611) 高校优势学科建设工程项目资助
关键词 气化 当量比 稻草 可燃气 稻草炭 gasification equivalence ratio rice straw combustible gas rice straw carbon
  • 相关文献

参考文献17

  • 1Leung D Y C, Yin X L, Wu C Z. A review on the development and commercialization of biomass gasification technologies in China. Re- newable & Sustainable Energy Reviews, 2004 ; 8 : 565-580.
  • 2Basu P. Biomass gasification and pyrolysis : practical design and theo- ry. Beijing: Academic Press, 2010:3-8.
  • 3Caputo A C, Palumbo M, Pelagagge P M, et al. Economics of bio- mass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy, 2005; 28 (1) : 35-51.
  • 4Demirbas A. Biomass resource facilities and biomass conversion pro- cessing for fuels and chemicals. Energy Conversion and Management, 2001 ; 42 (11) : 1357-1378.
  • 5石元春.中国生物质原料资源[J].中国工程科学,2011,13(2):16-23. 被引量:65
  • 6张卫杰,关海滨,姜建国,李晓霞,闫桂焕,孙荣峰,许敏,孙立.我国秸秆发电技术的应用及前景[J].农机化研究,2009,31(5):10-13. 被引量:27
  • 7Caputo A C, Palumbo M, Pelagagge P M, et al. Economics of bio- mass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy, 2005 ; 28 ( 1 ) : 35-51.
  • 8Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass : chemistry, catalysts, and engineering. Chemical Reviews, 2006; 106(9) : 4044-4098.
  • 9石元春.生物质能源主导论——为编制国家“十二五”规划建言献策[J].能源与节能,2011(1):1-7. 被引量:7
  • 10Martinez J D, Mahkamov K, Andrade R V, et al. Syngas produc- tion in down&aft biomass gasifiers and its application using internal combustion engines. Renewable Energy, 2012 ; 38 : 1-9.

二级参考文献65

  • 1王峰.秸秆热电厂的发展前景[J].控制工程,2008,15(S1):82-84. 被引量:1
  • 2孙荣峰,阎桂焕,许敏,孙立,关海滨.两步法生物质固定床气化发电技术[J].华电技术,2006,29(12):95-96. 被引量:3
  • 3盛昌栋,张军.煤粉锅炉共燃生物质发电技术的特点和优势[J].热力发电,2006,35(3):8-11. 被引量:21
  • 4黄军军,黄程鹏,董军.秸秆发电技术的现状和展望[J].能源与环境,2006(5):95-96. 被引量:10
  • 5Till man DA. Biomass cofiring: the technology, the experience, and the combustion consequence[ J]. Biomass & Bioenergy ,2000,19:365 - 384.
  • 6[4]Heikkinen J M,Hordijk J C,De Jong W.Spliethoff,H.Thermogravimetry as a tool to classify waste components to be used for energy generation.J.Anal.Appl.Pyrolysis,2004,71:883 -900.
  • 7[5]Vitolo S,Seggiani M,Frediani et al.Catalytic upgrading fo pyrolysis oils to fuel over different zeofites[J].Fuel,1999,78:1144-1159.
  • 8[1]Corella J,Orio A,Toledo J M.Biomass gasification with air in fluidized:reforming of the gas composition with commerical steam catalyst[J].Ind Eng Chen Res,1998,37(12):4617 -4626.
  • 9Edward Smeets, Andre Faaij, Iris Lewandowski. A quickscan of global bio-energy potentials to 2050[ Z]. 2004.
  • 10U.S. Department of Energy, U.S. Department of Agriculture. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply[ Z]. 2005.

共引文献126

同被引文献69

  • 1刘慧屿,娄春荣,韩英祚,王秀娟,何志刚.秸秆生物炭与减量氮肥配施对玉米氮素利用率及土壤结构的影响[J].土壤通报,2020(5):1180-1188. 被引量:22
  • 2姚小华,王开良,罗细芳,任华东,龚榜初,费学谦.我国油茶产业化现状及发展思路[J].林业科技开发,2005,19(1):3-6. 被引量:213
  • 3Caputo A C, Palumbo M, Pelagagge P M, et al. conomics of biomass energy utilization in combustion and gasification plants: effects of lo- gistic variables. Biomass and Bioenergy, 2005; 28 (1) : 35-51.
  • 4Huber G W,Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 2006 ; 106(9) : 4044-4098.
  • 5Garcia-Maraver A, Salvachaa D, Martanez M J, et al. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Man- agement, 2013; 33( 11 ): 2245-2249.
  • 6Zhang Q, Chang J, Wang T, et al. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Manage- ment, 2007 ; 48 ( 1 ) : 87-92.
  • 7Ma Z, Chen D, Gu J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free in- tegral methods. Energy Conversion and Management, 2015; 89: 251 -259.
  • 8Chen D, Zhou J, Zhang Q. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology, 2014; 169:313-319.
  • 9农韦健.枞酸热力学特性及其热分解动力学.南宁:广西大学,2012.
  • 10Lu G J, Wu S B. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. Journal of Ana- lytical and Applied Pyrolysis, 2012; 97:11-18.

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部