摘要
数字信号在敌情监测与侦查、卫星通信、非法电台监测等领域的使用极为广泛,因此对数字信号进行高效地识别、分析和利用具有重要的意义。为了改善信号的抗噪声性能和减小特征参数提取时的计算量,提出了一种利用联合参数对数字信号进行特征参数提取的方法。该方法先利用高阶累积量知识构造出三个参数,再利用信号瞬时幅度构造另外两个参数。最后基于联合参数法,利用神经网络对数字信号进行分类识别。实验结果表明,获取到的参数不仅能有效识别信号,而且当信噪比为10 dB时,识别的正确率可达95%以上,远远优于已有算法。
Digital signals are widely used in many fields, such as monitoring and investigation of the enemy, satellite communications, illegal radio monitoring and so on. signals efficiently. In order to improve the noise immunity of It is significant tO identify, analyze and utilize digital signals and reduce computation complexity of extrac- ting characteristic parameters, a combined method is proposed for extracting feature parameters in the present work. The method firstly uses cumulant knowledge to construct three parameters, then uses instantaneous amplitude to construct the other two parameters. Based on the combination of characteristic parameters, neural networks to identi- fy digital signals is finally used. The simulation results show that not only the new parameters can effectively identi- fy digital signals, but also the recognition rate exceeds 95% when the signal to noise ratio is ten, which outperforms the existing algorithm.
出处
《科学技术与工程》
北大核心
2014年第17期220-224,229,共6页
Science Technology and Engineering
基金
山西省自然科学基金项目(2009011018-1)资助
关键词
数字信号
高阶累积量
瞬时幅度
粗糙集
反向传播神经网络
digital signal
higher order cumulant
instantaneous amplitude
rough set
back prop agation neural networks