期刊文献+

矩阵伪逆的一个等价定义及其应用 被引量:1

Equivalent Definitions of Pseudo-Inverse on Matrix and Its Applications
下载PDF
导出
摘要 在Moore-Penrose逆的4个代数方程中两边取共轭转置,得到与之等价的定义。运用该等价定义,研究了矩阵A的自反广义逆、最小二乘广义逆、极小范数广义逆、M00re-Penrose逆,A{1,2,3}逆、A{1,2,4}逆及A{1,3,4}逆,得到了其间关系的若干充要条件。 Taking the conjugate transpose to four algebraic equations of the Moore-Penrose inverse,an equivalent definition of the Moore-Penrose inverse of matrix is gained.Futher,we study the reflexive generalized inverse,the least squares generalized inverse,the minimum norm generalized inverse,the Moore-Penrose inverse,A{ 1,2,3} inverse,A { 1,2,4} inverse and A { 1,3,4} inverse of matrix A,and obtain several necessary and sufficient conditions about their relationship.
作者 周玉兴
出处 《江南大学学报(自然科学版)》 CAS 2014年第3期371-373,共3页 Joural of Jiangnan University (Natural Science Edition) 
基金 广西省自然科学基金项目(2011GXNSFA018139)
关键词 伪逆 等价 矩阵 pseudo-inverses equivalent matrix
  • 相关文献

参考文献7

二级参考文献32

  • 1北京大学数学系.高等代数[M].北京:高等教育出版社,1988.78,99-101,254-262,298.
  • 2Cucker F,Smale S.On the mathematical foundationsof learning[J].Bul Am Math Soc,2001,39:1-49.
  • 3Feng Y L,LüS G.Unified approach to coefficient-based regularization[J].Computers&Mathematicswith Application,2011,62(1):506-515.
  • 4Steinwart I,Hush D,Scovel C.Optimal Rates for Reg-ularized Least Squares Regression[DB/OL] [2010-12-12].http://www.ccs3.lanl.gov/group/papers/la-ur-09-03830.pdf.
  • 5Sun H W,Wu Q.Regularized least square regressionwith dependent samples[J].Adv Compu Math,2010,32(2):176-189.
  • 6Wu Q,Ying Y M,Zhou D X.Learning rates of least-square regularized regression[J].Found ComputMath,2006,6(2):171-192.
  • 7Tong H Z,Chen D R,Yang F H.Least square regres-sion with lp-coefficient regularization[J].NeuralComput,2010,38:526-565.
  • 8Xu Y L,Chen D R.Learning rates of regularized re-gression for exponentially strongly mixing sequence[J].Journal of Statistical Planning and Inference,2008,138(7):2180-2189.
  • 9Zhang Y Q,Cao F L,Xu Z B.Estimation of learningrate of least square algorithm via Jackson operator[J].Neurocomputing,2011,74(2):516-521.
  • 10Zou B,Li L Q,Xu Z B.The generalization performanceof ERM algorithm with strongly mixing observations[J].Machine Learning,2009,75:275-295.

共引文献25

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部