期刊文献+

变分不等式的一种自适应算法

Self-adaptive algorithm for variational inequalities
下载PDF
导出
摘要 提出求解定义在实Hilbert空间闭凸集上Lipschitz强单调变分不等式唯一解的一种自适应算法,即以一种自适应的方式在每一步迭代计算时确定计算格式中的迭代步长,无需计算或估计其中非线性算子的Lipschitz常数和强单调系数,从而使得该算法更容易实现。证明了算法的强收敛性。 A self-adaptive algorithm is proposed to solve the Lipschitz and strongly monotone variational inequality defined on a closed convex subset in a real Hilbert space.Since this method selects stepsizes via a selfadaptive way,i.e.,has no need to estimate the Lipschitz constant and strong monotone coefficient,its implementation is rather easy.Strong convergence of the algorithm is proved.
作者 何松年 罗标
出处 《中国民航大学学报》 CAS 2014年第3期59-61,共3页 Journal of Civil Aviation University of China
基金 中央高校基本科研业务费专项(3122013k004)
关键词 自适应算法 变分不等式 强收敛 HILBERT空间 self-adaptive algorithm variational inequality strong convergence Hilbert space
  • 相关文献

参考文献16

  • 1STAMPACCHIA C. Formes bilineaires coercivites sur les ensembles convexes[J]. C R Acad Sci, 1964(258) : 4413-4416.
  • 2BAIOCCHI C, CAPELO A. Variational and Quasi Variational Inequalities [M]. New York: John Wiley and Sons, 1984.
  • 3BNOUHACHEM A. A self-adaptive method for solving general mixed variational inequalities[J]. J Math Anal Appl, 2005 (309) : 136-150.
  • 4COTYLE R W, GIANNESSI F, LIONS J L. Variational Inequalities and Complementarity Problems: Theory and Applications[M]. New York: John Wiley and Sons, 1980.
  • 5FUKUSHIMA M. A relaxed projection method for variational inequali- ties[J]. Math Program, 1986(35 ) : 58-70.
  • 6FUKUSHIMA M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems[J]. Math Program, 1992 (53) : 99-110.
  • 7GEOBEL K, REICH S. Uniform Convexity, Nonexpansive Mappings, and Hyperbolic Geometry[M]. New York: Marcel and Dekker, 1984.
  • 8GIANNESSI F, MAUGERI A, PARDALOS P M. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models[M]. Dor- drecht: Kluwer Academic Press, 2001.
  • 9GLOWINSKI R, LIONS J L, TREMOLIERS R. Numerical Analysis of Variational Inequalities[M]. Amsterdam: North-Holland, 1981.
  • 10HARKER P T, PANG J S. Finite-dimensional variational inequality and nonlinear omplementarity problems : a survey of theory, algorithms and applications[J]. Math Program, 1990(48) : 161-220.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部