期刊文献+

基于Micro-CT断层扫描图像的啄木鸟颅骨不同部位显微结构参数研究 被引量:1

Microstructure of Woodpecker's Cranial Bone Based on Micro-computed Tomography
原文传递
导出
摘要 选取大斑啄木鸟、灰头绿啄木鸟、百灵鸟、山雀和戴胜鸟作为样本,其中百灵鸟、山雀和戴胜鸟作为对照,研究啄木鸟颅骨颞部、额部和枕部的显微结构参数.样本经Micro-CT扫描后,在断层扫描图像的基础上,可以得到的显微结构参数包括体积分数、结构模型指数、骨小梁数量、骨小梁厚度、骨小梁分离度和骨质密度.通过与其他鸟类的对比分析发现,啄木鸟具有更加独特的颅骨结构,其骨小梁厚度、体积分数和骨小梁数量显著高于其他鸟类,结构模型指数小于其他鸟类,其颅骨所具有的这种特点是啄木鸟长期进化过程中为适应啄木行为所形成的,也是其抗冲击的重要原因. The main purpose of this article is to research the microstructure of woodpecker's cranial bone on tempus, occiput and forehead. The great spotted woodpecker, the grey-headed woodpecker, the eurasian hoopoe, the titmouse and the lark bird were selected as research samples and the Eurasian hoopoe, the titmouse and the lark bird were chosen as control groups. Microstructure parameters including BV/TV, SMI, Tb.N, Tb.Th, Tb.Sp and BMD were measured based on the micro-computed tomography. After comparison with the control groups, it was found that the Tb.Th, BV/TV and Tb.N were significantly higher and the SMI was lower than that of control groups. These characteristics of woodpecker's cranial bone were developed during the evolutionary process in order to adapt to the pecking behaviours and it is an important reason why woodpeckers can resist head impact.
出处 《中国科学:生命科学》 CSCD 北大核心 2014年第6期578-583,共6页 Scientia Sinica(Vitae)
基金 国家自然科学基金(批准号:11202017 11272038 11322223) 教育部博士点基金(批准号:20121102120039 20131102130004) 北京市自然科学基金(批准号:7133245)资助项目
关键词 啄木鸟颅骨 不同部位 显微结构参数 cranial bone of woodpecker, different parts, microstructure parameters
  • 相关文献

参考文献3

二级参考文献64

  • 1Eckstein F, Matsuura M, Kuhn V, et al. Sex differences of human trabecular bone microstructure in aging are site-dependent[J]. J Bone Miner Res, 2007, 22(6) . 817-824.
  • 2Homminga J, McCreadie BR, Ciarelli TE, et aL Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level[J]. Bone, 2002, 30(5) ; 759-764.
  • 3Ulrich D, van Rietbergen B, Laib A, et al. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone [ J ]. Bone, 1999, 25 ( 1 ) : 55- 60.
  • 4Hildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index [J]. Comput Meth Biomech Biomed Eng,1997, 1(1) :15-23.
  • 5Rietbergen BV, Muller R, Ulrich D, et aL Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions [ J]. J Biomech, 1999, 32(4) : 443-451.
  • 6Bevill G, Eswaran SK, Gupta A, et aL Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone, 2006, 39(6) : 1218-1225.
  • 7Rietbergen BV, Weinans H, Huiskes R,et aL A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models[ J ]. J Biomech, 1995, 28 ( 1 ) : 69-81.
  • 8Rietbergen BV, Huiskes R, Eckstein F, et al. Trabecular bone tissues trains in the healthy and osteoporotic human femur[J]. J Bone Miner Res, 2003, 18(10) : 1781-1788.
  • 9Verhulp E, van Rietbergen B, Huiskes R. Comparison of micro-level and continuum-level voxel models of the proximal femur[J]. J Biomech, 2006, 39 (16) : 2951-2957.
  • 10Ryan TM,Krovitz GE. Trabecular bone ontogeny in the human proximal femur[J]. J Hum Evol, 2006, 51 (2) : 591- 602.

共引文献33

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部