期刊文献+

基于特征子空间虚假邻点判别的铝电解槽况诊断模型

Diagnosis Model of Status of Aluminum Reduction Cells Based on False Nearest Neighbors in Feature Subspace
下载PDF
导出
摘要 造成铝电解异常槽况的因素较多,彼此相关性强,建立槽况诊断模型时计算量巨大。利用核主元分析法虽然可以对非线性数据进行降维,但得到的主元仍然是原始变量在特征空间的线性组合,既无明确的物理含义,又无法对原始特征进行约简达到减少传感器种类的目的。提出一种基于特征子空间虚假邻点判别的槽况诊断方法,首先考察各原始变量置零前后在核空间主元投影上的相似度,根据其对槽况的解释能力进行原始变量选择;再将约简后的原始变量输入概率神经网络,对各类异常槽况进行诊断。通过取自某厂170KA大型预焙槽的268组样本进行检验:在原始特征约简44.4%的情况下分类精度达到95%以上,表明该方法不但可对原始特征进行有效约简,而且槽况分类精度和训练时间均优于同类模型。 There is huge computation when status diagnosis model for aluminum electrolytic cells is established because of many strong correlation factors.Kernel principal component analysis can be used to reduce the dimensionality of the nonlinear cell data;however,the principal components haven't clear physical meaning as a linear combination of the original variables in the feature space.The method can not used to reduce original feature in order to achieve the purpose of sensors reduction.To overcome the above-mentioned problems,a novel diagnosis method based on false nearest neighbors(FNN) in feature subspace is proposed.In the proposed approach,it is inspired by FNN that interpretation of alumina concentration would be estimated by calculating the variables mapping distance in the kernel principal components analysis(KPCA) feature subspace.Selected variables are introduced into probabilistic neural network(PNN) as input vector to diagnose and classify different status of aluminum reduction cells.By using 268 groups of sample of 170KA operating aluminum cell from a factory,experimental results demonstrate that the classification accuracy is 95% and the original feature is reduced to 44.4%.The results show that the original feature is reduced effectively and classification accuracy and training time of diagnose five status of aluminum reduction cells are better than similar models.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第10期9-14,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(51075418 51374268 61174015) 重庆市自然科学基金(cstc2012jjB40006 cstc2012jjB40007 cstc2012jjA90011) 重庆科技学院校内科研基金(CK2011B04 CK2013Z10)资助项目
关键词 虚假最近邻点法 核主元分析法 概率神经网络 故障诊断 铝电解 false nearest neighbors kernel principal components analysis probabilistic neural network fault diagnosis aluminum electrolysis
  • 相关文献

参考文献14

  • 1VOGTI H, THONSTAD J. The voltage of alumina reduction cells prior to the anode effect[J]. Journal of Applied Electrochemistry, 2002, 32: 241-249.
  • 2MAJID N A A, TAYLOR M P, CHEN J J, et al. Aluminum process fault detection by multiway principal component analysis[J]. Control Engineering Practice, 2011, 19: 367-379.
  • 3栗茂林,梁霖,王孙安.基于稀疏表示的故障敏感特征提取方法[J].机械工程学报,2013,49(1):73-80. 被引量:22
  • 4BEREZIN A I, POLYAKOW P V, RODNOV O O. FMEA-based expert system for electrolysis diagnosis[C]//Halvor Kvande, the 134th the Minerals, Metal and Materials Society Annual Meeting. Calgat',:, Alberta, Canada. Canadian Institute of Mining Metallurgy and Petroleum, 2005: 429-434.
  • 5李界家,李旸,吴成东.模糊神经网络技术在铝电解故障诊断中的应用[J].沈阳建筑大学学报(自然科学版),2005,21(4):390-394. 被引量:3
  • 6李贺松,殷小宝,黄涌波,丁立伟,姜昌伟.基于阳极电流波动的铝电解槽槽况诊断系统[J].化工学报,2011,62(6):1770-1777. 被引量:12
  • 7XU Yong, ZHANG D, SONG Fengxi, et al. A method for speeding up feature extraction based on KPCA[J]. Neurocomputing, 2007, 70(4-6): 1056-1061.
  • 8CAO L J, CHUA K S, CHONG W K. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine[J]. Neurocomputing, 2003, 55. 321-336.
  • 9PANG Yanwei, WANG Lei, YUAN Yuan. Generalized KPCA by adaptive rules in feature space[J]. International Journal of Computer Mathematics, 2010, 87(5): 956-968.
  • 10CARL R, MANFRED M. The false nearest neighbors algorithm: An overview[J]. Computers & Chemical Engineering, 1997, 21 : 1149-1154.

二级参考文献53

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部