期刊文献+

变负载下的特征提取与基于CHMM算法的齿轮故障诊断

Feature Extraction under Varying Load and Fault Diagnosis Based on CHMM
下载PDF
导出
摘要 为了对变负载工况下齿轮故障特征进行有效的提取,提出了基于ARX模型的特征提取方法,并用利用连续隐Markov模型(CHMM)对齿轮的故障进行了识别。实例分析中,对正弦性变化负载的齿轮箱进行了全寿命实验,采用基于ARX模型的方法提取特征,输入到CHMM对故障进行了准确的识别,验证了该方法的有效性。 In order to extract gear fault feature under the condition of various load effectively, a novel feature extraction method based on ARX model was proposed and was identified successfully by using continuous hidden Markov model ( CHMM ) . The performance of the feature extraction method is validated by using full lifetime data obtained from the gearbox operating from a new condition to a breakdown under varying load.
作者 徐振黔
出处 《失效分析与预防》 2014年第2期61-66,共6页 Failure Analysis and Prevention
基金 航空基金(BA201103159)
关键词 ARX模型 连续隐马尔科夫模型(CHMM) 变负载 ARX model continuous hidden Markov model (CHMM) variable load
  • 相关文献

参考文献8

  • 1Kar C, Mohanty A R. Vibration and current transient monitoring for gearbox fault detection using multiresolution Fourier transform [ J ]. Journal of Sound and Vibration, 2008,311 ( 1 - 2 ) : 109 - 132.
  • 2张超,陈建军,郭迅.基于EMD能量熵和支持向量机的齿轮故障诊断方法[J].振动与冲击,2010,29(10):216-220. 被引量:126
  • 3何田,林意洲,郜普刚,申永军.局部均值分解在齿轮故障诊断中的应用研究[J].振动与冲击,2011,30(6):196-201. 被引量:35
  • 4Wang W Y, Wong A K. Autoregressive model-based gear fault diagnosis[J]. Journal of Vibration and Acoustics, 2002, 124 (2) :172 -179.
  • 5Zhan Y, Makis V. A robust diagnostic model for gearboxes subject to vibration monitoring [ J ]. Journal of Sound and Vibration, 2006,290 (3 - 5 ) :928 - 955.
  • 6王细洋,孔志高,董海,龚廷恺.基于自回归模型的齿轮轴破损诊断[J].机械工程学报,2009,45(4):265-272. 被引量:14
  • 7Ljung L. System identification: Theory for the user (2nd edition) [ M ]. Upper Saddle River, N J, Prentice-Hall PTR, 1999:89 - 112.
  • 8Rabiner L R. A tutorial on hidden Markov models and selected application in speech recognition[ J]. Proceedings of the IEEE, 1989,77 (2) :257 - 286.

二级参考文献22

  • 1于德介,程军圣,成琼.基于复小波变换相位谱的齿轮故障诊断[J].振动.测试与诊断,2004,24(4):275-276. 被引量:9
  • 2ENDO H, RANDALL R B. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter [J]. Mechanical Systems and Signal Processing, 2007, 21: 906-919.
  • 3WANG W, WONG A K. Autoregressive model-based gear fault diagnosis [J]. Journal of Vibration and Acoustics, 2002, 124: 172-179.
  • 4ZHAN Yimin, MAKIS Viliam, JARDINE Andrew K S. Adaptive state detection of gearboxes under varying load conditions based on parametric modeling [J]. Mechanical Systems and Signal Processing, 2006, 20: 188-221.
  • 5ANDRADE F A, ESAT I, BADI M N M. A new approach to time-domain vibration condition monitoring: Gear tooth fatigue crack detection and identification by the Kolmogorov-Smirnov [J]. Journal of Sound and Vibration, 2001, 240(5): 909-919.
  • 6KAR Chinmaya, MOHANTY A R. Application of KS test in ball bearing fault diagnosis [J]. Journal of Sound and Vibration, 2004, 269: 439-454.
  • 7WANG Wenyi. Early detection of gear tooth cracking using the resonance demodulation [J]. Mechanical Systems and Signal Processing, 2001, 15: 887-903.
  • 8DALPIAZ G, RIVOLA A, RUBINI R. Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears [J]. Mechanical System and Signal Processing, 2004, 3: 387-412.
  • 9吴喜之.非参数统计[M].北京:高等教育出版社,1996.
  • 10程军圣 杨宇 于德介.一种新的时频分析方法-局域均值分解方法.振动与冲击,2008,(27):129-131.

共引文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部