期刊文献+

基于主因子模型的船用燃气轮机监测参数优化

Measure Parameter Selection for Marine Gas Turbine Based on Main Factors Model
下载PDF
导出
摘要 针对燃气轮机气路故障模型存在多重共线性,使用主成分方法分析了主因子模型中故障系数矩阵的特性,并研究了多重共线性对诊断准确性的影响,结合敏感性分析,优化选择了测量参数。结果表明:虽然选择的测量参数数目少于故障因子数目,但故障诊断效果较好,能有效辨别相似故障。 Considering the problem of multicollinearity in gas path fault model of Gas turbine , the method of principal component anal-ysis ( PCA) is used to study the characteristic of fault coefficient matrix of main factors model and research the impact of multicollinear -ity on diagnostic accuracy , combined with sensitivity analysis , optimize the selection of measurement parameters .Results show that the number of selected measurement parameters sequence is less than the number of failure factors , but these parameters supply a better fault diagnosis , which can effectively identify similar faults .
作者 袁环 刘永葆
出处 《燃气轮机技术》 2014年第2期46-49,共4页 Gas Turbine Technology
关键词 船用燃气轮机 故障诊断 主因子模型 测量参数选择 主成分分析 marine gas turbine fault detection main factors model measure parameter selection principal component analysis
  • 相关文献

参考文献5

  • 1Urban. L.A. Gas Path Analysis Applied to Turbine Engine Condi- tion Monitoring[ J]. Journal of Engineering for Power. 1972, 10 (7) : 400-406.
  • 2Ph. Kaboukos,P. Oikonomou, A. Stamatis, and K. Mathioudakis. Optimizing diagnostic effectiveness of mixed tur-bofans by means of adaptive modelling and choice of appropriate monitoring parameters [ C ]. Ageing Mechanisms and Control Specialists' Meeting on Life Management Techniques for Ageing Air Vehicles, Manchester, UK, October 2001.
  • 3蒲星星,刘尚明,蒋洪德.重型燃气轮机状态能观度分析及其在故障诊断中的应用[J].中国电机工程学报,2012,32(2):117-122. 被引量:9
  • 4S. O. T. Ogaji,Sampath S. ,R. Singh,and S. D. Probert. Parameter selection for diagnosing a gas-turbine's performance-deterioration [ J]. Applied Energy, 2002,73 (1) : 25 -46.
  • 5Simon D. L. , Donald L. A Systematic Approach to Sensor Selec- tion for Aircraft Engine Health Estimation [ R ]. [ NASA/TM - 2009 - 215839 ].

二级参考文献19

  • 1宁晓琳,房建成.航天器自主天文导航系统的可观测性及可观测度分析[J].北京航空航天大学学报,2005,31(6):673-677. 被引量:19
  • 2邢光谦.量测系统的能观度和状态估计精度.自动化学报,1985,11(2):152-158.
  • 3Gtllen S C, Griffin P R, Paolucci S. Real-time on-line perforrnace diagnostics of heavy-duty industrial gas ~rbines[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(4): 910-921.
  • 4Simon D L, Garg S. Optimal tuner selection for kalman filter-based aircraft engine performance estimation[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 031601-1-031601-10.
  • 5Pinelli M, Spina P R. Gas turbine field performance determination, sources of uncertainties[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 155-160.
  • 6Aretakis N, Mathioudakis K, Stamatis A. Nonlinear engine component fault diagnosis from a limited number of measurements using a combinatorial approach[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(3): 642-650.
  • 7Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wise constant systems-part Ⅰ: theory[J]. IEEE Transactions on Aerospace and Electronic System, 1992, 28(4): 1056-1067.
  • 8Hermann R, Krener A J. Nonlinear controllability and observability[J] . IEEE Transactions on Automatic Control, 1977, AC-22(5): 728-740.
  • 9Ham F M, Brown R G. Observability, eigenvalues, and kalman filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(2): 269-273.
  • 10Zhe Chen. Local observability and its application to multiple measurement estimation[J]. IEEE Transactions on Industrial Electronics, 1991, 38(6): 491-496.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部