期刊文献+

求解非奇异线性方程组的正交降阶法

Orthogonal Reduced-Order Method for Solving Nonsingular Llinear Systems
下载PDF
导出
摘要 基于Gram-Schmidt正交化方法提出了一种新的解线性方程组降阶的方法,证明了新的降阶方法是可行的,而且比Gram-Schmidt正交化QR方法解线性方程组运算量小,同时较QR方法以及LU分解方法解线性方程组数值更加稳定.最后,通过数值例子验证了新的降阶方法的有效性. Based on the Gram-Schmidt QR method,a new orthonormal method for solving general linear systems was developed.The feasibility of the new method was proved,meanwhile it was demonstrated that the new method involves less arithmetic than the Gram-Schmidt QR method and have better numerical stability than the Gaussian elemenation and Gram-Schmidt QR method.The numerical examples show the effectiveness of the new method.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第3期248-251,257,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(11371257) 山西省自然科学基金资助项目(2010011006 2012011015-6)
关键词 正交化 Gram-Schmidt正交化 降阶解法 线性方程组 orthogonal Gram-Schmidt QR method reduced-order linear systems
  • 相关文献

参考文献10

  • 1Golub G H, Van Loan C F. Matrix Computations[ M]. Baltimore: The Johns Hopkins University Press, 1996.
  • 2徐树方,高立,张平文.数值线性代数[M].北京:北京大学出版社,2011.1-5.
  • 3Strang G, Linear Algebra and Its Applications[ M]. 2nd ed. New York: Academic Press, 1980.
  • 4Ruhe A. Numerical aspects of gram-schmidt orthogonal- ization of vectors [ J ]. Linear Algebra and its Applica- tions, 1983, 52-53: 591-601.
  • 5Giraud L, Langou J. Rounding error analysis of the clas- sical gram-sehmidt orthogonalization process[J]. Numer. Math., 2005, 101(1): 87-100.
  • 6Rice J R. Experiments on gram-schmidt orthogonalization [J]. Math. Comput., 1966, 20(94): 325-328.
  • 7Daniel J W, Gragg W B, Kaufman L, et al. Reorthogo- nalizationand stable algorithms for updating the gram- schmidt QR factorization[J ]. Math. Comput., 1976, 136(30) : 772-795.
  • 8Giraud L, Langou J. When modified gram-schmidt gen-erates a well-conditioned set of vectors[ J ]. IMA Journal of Numerical Analysis, 2002, 22(4) : 521-528.
  • 9Wang C L, Yan X H. On convergence of splitting itera- tion methods for non-Hermitian positive definite linear systems[J ]. International Journal of Computer Math- ematics, 2013, 90(2). 292-305.
  • 10Meng G Y, Wang C L, Yan X H. Self-Adaptive Non- Stationary Parallel Multisplitting Two-Stage Iterative Methods for Linear Systems [ M ]. Berlin Heidelberg: Springer-Verlag, 2012: 38-47.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部