期刊文献+

动态对称块SAP迭代重建方法

SAP Iterative Reconstruction of Dynamic Symmetry Block
下载PDF
导出
摘要 SAP(String-Averaging Projection)是图像重建的一类超平面投影迭代方法,将String顺序投影后加权平均进行迭代,以减小重建误差,提高成像质量.DSAP(Dynamic String-Averaging Projection)算法是在SAP算法基础上的改进,将String扩展为分块String,然后对分块String的投影值加权平均.将DSAP算法与块结构、射线间的对称关系相结合,构造出动态对称块SAP迭代方法,讨论了其几何意义和收敛性质,并给出了数据实验.实验结果表明:动态对称块SAP迭代方法与经典ART及对称块算法和块内SAP算法相比较,能更好地在空间分辨率和密度分辨率之间取得良好的折衷. SAP is a class of hyperplane projection iterative method of image reconstruction.It takes a weighted average of the projection values obtained by sequential iteration.This iterative algorithm can reduce the error of reconstruction result and improve the quality of image.DSAP algorithm which is based on the SAP algorithm is further improved,and it takes the weighted average again after taking respectively a weighted average of projection values of block strings,which are the extension of the string.In this paper,the DSAP algorithm was combined block structure and symmetric relations between rays,the dynamic symmetric block SAP iteration method was constructed.It discussed geometric meaning and convergence property,and the experimental data were provided.The experimental results show that compared to the classical ART iterative algorithm,symmetric block iterative algorithm and SAP algorithm,the dynamic symmetric block SAP iteration method can better in a good compromise between the spatial resolution and density resolution.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第3期322-329,共8页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(61271425 61372150)
关键词 图像重建 迭代算法 SAP算法 DSAP算法 对称性结构 image reconstruction iterative algorithm string-averaging projection dynamic string-averaging projection symmetric structure
  • 相关文献

参考文献10

  • 1Censor Y, Elfving T, Herman G T. Averaging strings of sequential iterations for convex feasibility problems[ J ]. Journal: Studies in Computational Mathematics, 2001, 8: 101-113.
  • 2Bauschke H H, Borwein J M. Projection algorithms for solving convex feasibility problems [ J ]. SIAM Rev., 1996, 38: 367-426.
  • 3Censor Y, Chen W, Combettes P L, et al. On the effec- tiveness of projection methods for convex feasibility prob- lems with linear inequality constraints[J ]. Comput. Op- tim. Appl., 2012, 51. 1065-1088.
  • 4Combettes P L. Solving monotone inclusions via composi- tions of nonexpansive averaged operators[J]. Optimiza- tion, 2004, 53: 475-504.
  • 5Gorden R, Bender R, Herman G T. Algebraic recon- struction techniques(ART) for three-dimensional electron microscopy and X-ray photograph [J ]. Journal of Theo- retical Bioloy, 1970, 29: 471-481.
  • 6Gilbert P F C. Iterative methods for the three-dimension- al reconstruction of an object from projections[ J ]. Journal of Theoretical Biology, 1972, 36: 105-117.
  • 7Elfving T. Block-iterative methods for consistent and in- consistent linear equations[J]. Numerische Mathematik, 1980, 35: 1-12.
  • 8Aharoni R, Censor Y. Block-iterative projection meth-ods for parallel computation of solutions to convex feasi- bility problems[J]. Linear Algebra Appl. , 1989, 120: 165-175.
  • 9Censor Y, Zaslavski A J. Convergence and perturbation resilience of dynamic sting-averaging projection methods [J ]. Computational Optimization and Applications, 2013, 54: 65-76.
  • 10邱钧,徐茂林.由投影重建图像的对称块迭代算法[J].电子与信息学报,2007,29(10):2296-2300. 被引量:11

二级参考文献13

  • 1Gorden R, Bender R, and Herman G T. Algebraic Recostruction Techniques (ART) for three-dimensional electron microscopy and X-ray Photograph. Journal of Theoretical Biology, 1970, 29(5): 471-481.
  • 2Gilbert P F C. Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology, 1972, 36(4): 105-117.
  • 3Herman G T. Image Reconstruction from Projections. New York: Academic Press, 1980: 120-143.
  • 4Natterer F. The Mathematics of Computerized Tomography. NewYork: John Wiley & Sons, 1986: 89-130.
  • 5Ramm A G and Katsevich A I. The Radon Transform and Local Tomography. NewYork: CRC Press, 1996: 26-133.
  • 6Herman G T and Lent A. Quadratic optimization for image reconstruction I. Computer Vision, Graphics and Image Processing, 1976, 5(6): 319-332.
  • 7Wang Yuanmei and Lu Weixue. Multiobjective optimization approach to image reconstruction from projections, Signal Processing, 1992, 26(1): 16-15.
  • 8Jiang Ming and Wang Ge. Convergence studies on iterative algorithms for image reconstruction, IEEE Trans. on Medical Imaging, 2003, 22(5): 569-579.
  • 9Wang Ge and Jiang Ming. Ordered-subset simultaneous algebra reconstrucion techniques, Journal of X-Ray Science and Technology, 2004, 12(4): 169-177.
  • 10Eggermont P P B, Herman G T, and Lent A. Iterative algorithms for large partitioned linear systems, with applications to image reconstruction, Linear Algebra and its Applications, 1981, 40(2): 37-67.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部