期刊文献+

时标上的变时滞二维动力系统的振动性

The Oscillation of Two-Dimensional Delay Dynamic Systems on Time Scales
下载PDF
导出
摘要 利用广义Riccati变换和不等式技巧,讨论一类时标上具有两个变时滞的二维动力系统的解的振动性质,得到的振动定理既适用于变时滞二维动力系统,也适用于变时滞二维微分系统和差分系统及某些二阶时滞动力系统。 By the use of generalized Riccati transformation and inequality technique , this paper studies the oscillation of two-dimensional delay dynamic systems on time scales .Our results not only unify the oscillation of two-dimensional delay differential systems on time scales , but also include the oscillation results for delay differential systems , providing new oscillation criteria for de-lay difference systems .
出处 《东莞理工学院学报》 2014年第3期1-7,共7页 Journal of Dongguan University of Technology
关键词 二维 时滞 动态系统 振动 时标 two-dimensional delay dynamic systems oscillation time scales
  • 相关文献

参考文献1

二级参考文献10

  • 1Hale JK.Theory of functional differential equations[]..1977
  • 2RP Agarwal,SR Grace,D O’Regan.Oscillation Theory for Second-Order Linear[]..2002
  • 3M.K.Kwong,,J.S.W.Wong.Oscillation ofEmden-Fowler system[].Diff IntegEqns.1988
  • 4I-G.E.Kordonis,Ch.G.Philos.On the oscillation of nonlinear two-dimensional differential systems[].Proceedings of the American Mathematical Society.1998
  • 5D.D.Mirzov.Oscillatory properties of a system of nonlinear differential equations[].Differential Equations.1973
  • 6D.D.Mirzov.The oscillation of solutions of a system of nonlinear differential equations[].Mathematical Notes.1974
  • 7D.D.Mirzov.Oscillatory properties of solutions of a nonlinear differential system[].Differential Equations.1980
  • 8W.T.Li,S.S.Cheng.Limiting behavior of nonoscillation solutions of a pair of coupled nonlinear differential equation[].Mathematical and Computer Modelling.2002
  • 9W.T.Li.Classification schemes for positive solutions of nonlinear differential systems[].ProcEdinburghMathSoc.2000
  • 10W.Leighton.The detection of oscillation of solutions of a second order linear differential equations[].Duke Mathematical Journal.1950

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部