期刊文献+

基于自适应最优核时频分布理论的ISAR成像方法 被引量:2

ISAR Imaging Based on Adaptive Optimal Kernel Time-Frequency Representation
下载PDF
导出
摘要 由于运动的复杂性,传统的成像方法已无法满足机动目标成像的要求。在分析机动目标复杂运动引起目标回波多普勒相位非线性变化的基础上,提出了一种基于自适应最优核时频分布(AOK TFR)理论的ISAR成像方法。通过计算回波数据不同距离单元的AOK TFR,得到不同时刻目标的瞬态ISAR像,且不受交叉项的影响;通过估计距离单元的瞬时多普勒频率并依此对成像时间段进行选择。仿真数据结果验证了该方法的有效性。 Because of target's complicated movement, conventional ISAR imaging algorithm can not meet the demands of maneuvering target imaging. On the basis of analyzing the echo' s non-linear Doppler shifts caused by maneuvering target movements, a new ISAR imaging method based on AOK TFR is proposed. The instantaneous target images can be obtained by calculating the AOK TFR of different range bins. Compared with the classical time frequency distribution, the AOK TRF has no cross item interference from multicomponent signals. Meanwhile, the instantaneous Doppler frequencies of echoes in range bins are estimated. According to the estimated Doppler frequencies, imaging time can be selected. The simulationd results demonstrate the validity of the proposed method.
机构地区 中国人民解放军
出处 《电光与控制》 北大核心 2014年第7期46-50,102,共6页 Electronics Optics & Control
关键词 自适应最优核时频分布(AOK TFR) ISAR成像 瞬时频率估计 时间选择 adaptive optimal kernel time-frequency representation (AOK TFR ) ISAR imaging instantaneous frequency estimation time selection
  • 相关文献

参考文献13

二级参考文献34

  • 1Chen V C, Qian S. Joint time-frequency analysis for radar range-doppler imaging[ J]. IEEE Trans. on AES, 1998, 34 (2):486 - 499.
  • 2Chen V C. Applications of time-frequency processing to radar imaging[J]. Optical Engineering, 1997, 36(4) : 1152 - 1161.
  • 3Namias V. The fractional Fourier transform and its application in quantum mechanics[J]. J. Inst. Maths. Applications, 1980, 25, 241 -265.
  • 4Ozaktas H M, Arikan O, Kutay M A. Digital computation of the fractional Fourier transform[ J]. IEEE Trans on SP, 1996, 44(9) :2141 -2150.
  • 5BOASHASH B, BLACK P. An effieient real-time implementation of the Wigner-Ville distribution [J]. IEEE Trans. on ASSP, 1987,35(11) :1611-1618.
  • 6PEI Soo-chang, HSUE Wen-liang. The multiple-parameter discrete fractional Fourier transform [J]. IEEE Signal Processing Letters, 2006,13(6) :329-332.
  • 7BARANIUK R G, COATES M, STEEGHS P. Hybrid linear/quadratic time-frequency attributes [J]. IEEE Trans. on Signal Processing, 2001,49(4):760-766.
  • 8BARANIUK R G, JONES D L. A radially gaussian, signal-dependent time-frequency representation [J]. IEEE Trans. on Signal Processing, 1993,32(6):263-284.
  • 9JONES D L, BARANIUK R G. An adaptive optimal kernel time-frequency representation [J]. IEEE Trans. on Signal Processing, 1995,43(10) :2361-2371.
  • 10Chen C C,Andrews H C.Targets-motion-induced radar imaging.IEEE Trans.on AES,1980,16 (1):2-14.

共引文献24

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部