期刊文献+

永磁同步电机的分数阶全局快速滑模控制 被引量:3

Fractional-order Global Fast Sliding Mode Control for Permanent Magnet Synchronous Motor Drive System
下载PDF
导出
摘要 针对一类高阶非线性系统,提出一种分数阶全局快速滑模控制策略。融合分数阶微积分理论与滑模变结构控制方法的优点,利用分数阶微积分算子设计滑平面,并应用于永磁同步电机(PMSM)速度控制器的设计,不仅加快了系统状态的收敛速度,削弱了系统的抖振,并且对外部干扰及参数摄动具有较强的鲁棒性。仿真结果表明,本文提出的分数阶滑模控制方法能够有效确保PMSM的鲁棒性、快速性和稳定性。 A new global fast sliding mode control scheme based on fractional calculus was proposed for a class of high-order nonlinear systems. The method integrates the advantages of fractional calculus theory and sliding mode variable structure control. Fractional-order differential and integral calculus is used to design global fast sliding plane, and is applied to velocity control design of permanent magnet synchronous motor (PMSM). The study not only accelerates the convergence speed, weakens the chattering phenomenon, but also achieves strong robustness with external disturbances and parameter perturbation. Simulated results indicate that the proposed method can effectively ensure stronaer robustness,faster performance and better stability of PMSM.
出处 《太原科技大学学报》 2014年第3期190-194,共5页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金(2012011027-4) 太原科技大学博士研究基金(20122014)
关键词 分数阶 全局快速滑模 滑平面 永磁同步电机 fractional-order, global fast sliding mode, sliding plane, PMSM
  • 相关文献

参考文献9

  • 1张碧陶,皮佑国.永磁同步电机伺服系统模糊分数阶滑模控制[J].控制与决策,2012,27(12):1776-1780. 被引量:34
  • 2桑海,赵志诚,孟香,张井岗.交流伺服系统的一种PIλDμ控制器设计方法[J].太原科技大学学报,2013,34(6):406-409. 被引量:5
  • 3XUE D Y,CHEN Y Q. A comparative introduction of four fractional order controllers[ C]//Proc of the 4th World Congress on Intelligent Control and Automation,Shanghai ,2002:3228-3235.
  • 4LUO Y, CHEN Y Q. Fractional order [ proportional derivative] controller for a class of fractional order systems [ J ]. Automati- ca, 2009,45 (10) : 2446 -2450.
  • 5CHEN D Y,ZHANG R F, Sprott J C, et al. Synchronization between integer-order chaotic systems and fractional-order chaotic systems via sliding mode control [ J ]. Choas, 2012 ( 22 ) : 1-9.
  • 6续丹,雒焕强,房念兴,曹秉刚.永磁同步电机分数阶与滑模变结构复合控制研究[J].西安交通大学学报,2012,46(5):132-136. 被引量:10
  • 7LI Y, CHEN Y Q, PODLUBNY I. Mittag-Leffler stability of fractional order nonlinear dynamic systems [ J ]. Automatica,2009, 45 : 1965-1969.
  • 8YIN C, ZHONG S M, CHEN W F. Design of sliding mode controller for a class of fractional-order chaotic systems [ J ]. Commun Nonlinear Sci Numer Simulat ,2012,17:356-366.
  • 9ZHANG BITAO,PI YOUGUO, LUO YING. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor[ J]. ISA Transactions ,2012,51:649-656.

二级参考文献27

  • 1曾庆山,曹广益.分数阶线性系统的能观性研究[J].系统工程与电子技术,2004,26(11):1647-1650. 被引量:6
  • 2赵金,王离九,万淑芸,黄锦恩.高性能交流伺服系统的一种新型控制策略[J].电气传动,1994,24(4):13-16. 被引量:8
  • 3曹军义,曹秉刚.分数阶控制器的数字实现及其特性[J].控制理论与应用,2006,23(5):791-794. 被引量:33
  • 4刘金琨.先进PID控制MATLAB仿真[M].3版.北京:电子工业出版社,2011.
  • 5Baik I C, Kim K H, Youn M J. Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique[J]. IEEE Trans on Control Systems Technology, 2000, 8(3): 47-54.
  • 6Da Lin, Xing yuan Wang. Oberver-based decentralized fuzzy neural sliding mode control for interconnected unknow chaotic systems via network structure adaptation[J]. Fuzzy Sets and Systems, 2010, 16(1): 2066- 2080.
  • 7Francesco Dinuzzo, Antonella Ferrara. Higher order sliding mode controllers with optimal reaching[J]. IEEE Trans on Automatica Control, 2009, 54(9): 98-104.
  • 8Arie Levant. Homogeneity approach to high-order sliding mode design[J]. Automatica, 2005, 41(5): 823-830.
  • 9Delavari H, Ghaderi R, Ranjbar A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4): 963-978.
  • 10Wai Rong-Jong, Lin Chih-Min, Hsu Chun-Fei. Adaptive fuzzy sliding-mode control for electrical servo drive[J]. Fuzzy Sets and Systems, 2004, 143(2): 295-310.

共引文献46

同被引文献35

  • 1路强,沈传文,季晓隆,孟永庆.一种用于感应电机控制的新型滑模速度观测器研究[J].中国电机工程学报,2006,26(18):164-168. 被引量:38
  • 2王庆龙,张崇巍,张兴.交流电机无速度传感器矢量控制系统变结构模型参考自适应转速辨识[J].中国电机工程学报,2007,27(15):70-74. 被引量:44
  • 3OMAR H M, NAYFEH A H. A simple adaptive feedback controller for tower cranes[ C ] //Proc, of 18'h Biennial Conference on Mechanical Vibration and Noise, Pittsburgh:American Society of Mechanical Engineers ,2001:2611-2621.
  • 4S CHATYERJEE. Vibration control by recursive time-delayed acceleration feedback[ J ]. Journal of Sound and Vibration, 2008, 317(1-2) :67-90.
  • 5KUNIHIKO NAKAZONO, KOUHEI OHNISHI,HIROSHI KINJIO, et al. Vibration control of load for rotary crane system using neural network with GA-based training[J]. Artificial Life and Robotics,2008,13( 1 ) :98-101.
  • 6JORG NEUPERT, ECKHARD ARNOLD, KLAUS SCHNEIDER, et al. Tmeking and anti-sway control for boom cranes [ J ]. Con- trol Engineering Practice,2010,18 (1) :31-44.
  • 7DAVID BLACKBURN, JASON LAWRENCE, JON DANIELSON, et al. Radial-motion assisted command shapers for nonlinear tower crane rotational slewing [ J ]. Control Engineea4ng Practice,2010,18 (5) :523-531.
  • 8MEHMET ONDER. Fractional order sliding mode control with reaching law approach[ J ]. Turkish Journal Electrical Engineering & Computer Sciences,2010,18 (5) :731-747.
  • 9S HASSAN HOSSEINNIA, INES TEJADO, BIAS M VINAGRE, et al. Boolean-based fractional order SMC for switching sys- toms : application to a DC-DC buck converter [ J ]. Signal, Image and Video Processing,2012,6 ( 3 ) :445 -451.
  • 10MOHAMMAD P A. Finite-time chaos control and synchronization of fractional-order non- autonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique[J]. Nonlinear Dynamics ,2012,69(4) :247-261.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部