期刊文献+

Copula EDA-BP混合优化算法预测股票价格 被引量:2

Copula EDA-BP Hybrid Optimization Algorithm to Predict the Stock Price
下载PDF
导出
摘要 股票价格的预测是广大投资者非常关注的问题,也是诸多学者不断研究的方向,神经网络具有学习样本规律的特点,通过神经网络预测股票价格是近几年研究的重点之一。Copula EDA-BP混合优化算法是利用了copula EDA的全局寻优和BP算法局部求精的特点,将两者结合起来建立了基于copula EDA-BP的模型系统,优化神经网络的权值阈值,对股票上证180的收盘价进行预测得到误差率,结果显示copula EDA-BP算法平均误差率低于BP算法,提高了传统BP神经网络的计算精度。 Stock price prediction is the issue thAt A vAst number of investors Are concerned And mAny scholArs Are continuing to study the direction. NeurAl network hAs the chArActeristics of leArning sAmples of neurAl network prediction,And the price of the stock is one of the reseArch focuses in recent yeArs. CopulA EDA-BP hybrid optimizA-tion Algorithm uses the globAl copulA EDA optimizAtion And BP Algorithm for locAl refinement to combine the two estAblished model system bAsed on copulA EDA-BP,weight And threshold optimizAtion neurAl network,predicted er-ror rAte on the Stock ExchAnge 180 closing price. Results show thAt the AverAge error rAte of the copulA EDA-BP algorithm is less thAn thAt of BP Algorithm,which improves the AccurAcy of trAditionAl BP neurAl network.
出处 《太原科技大学学报》 2014年第3期194-197,共4页 Journal of Taiyuan University of Science and Technology
基金 山西省优秀研究生创新项目(20113121) 太原科技大学博士基金(20122009) 太原科技大学研究生创新项目(20125012)
关键词 股票预测 copula分布估计算法 BP神经网络 优化 stock prediction, estimation of distribution algorithm based on copula, BP Neural network, optimize
  • 相关文献

参考文献3

二级参考文献108

  • 1童明余,肖志祥.GM(1,1)在股票价格预测中的运用[J].黄冈师范学院学报,2005,25(3):9-11. 被引量:7
  • 2杨永国.灰色时序组合模型及其在矿井涌水量预测中的应用[J].水文地质工程地质,1996,23(6):36-38. 被引量:11
  • 3Binswanger, M. Stock Market Booms and Real Economic Activity: Is This Time Different? International Review of Economics and Finance,2000 (9), pp. 387- 415.
  • 4Canova, F., and G. De Nicolo. Stock Returns and Real Activity: A Structural Approach. European Economic Review, (39) 1995, pp.981 - 1015.
  • 5Chen, N.F., R. Roll, and S.A. Ross. Economic forces and the stock market. Journal of Business, (59) 1986, pp. 383- 403.
  • 6Chetmg, Y. W. and K. S. Lai. Finite - Sample Sizes of Johansens' s Likelihood Ratio Tests for Cointegration. Oxford Bul2etin of Statistics and Economics, (54) 1992, pp. 313-328.
  • 7Johansen, S., Estimation and Hypothesis Testing of Cointegrating Vectors in Gaussian Vector Autoregressive Models. Econometrica, (59)1991 , pp. 1551 - 1580.
  • 8Johansen, S. Likelihood Based Inference in Cointegrated Vector Auto - Regressive Models, Oxford University Press, 1995.
  • 9Lee, B. Causal Relations among Stock Returns, Interest Rates, Real Activity and Inflation. Journal of Finance, (47) 1992, pp. 1591 -1603.
  • 10Leigh, L. Stock Market Equilibrium and M acroeconomic Fundamentals. IMF Working Papers 97/15, International Monetary Fund, 1997.

共引文献300

同被引文献16

  • 1李霞,张明珠.随机变量之间相依性的有关研究[J].西南民族大学学报(自然科学版),2005,31(3):356-358. 被引量:4
  • 2王高雄.常微分方程[M].北京:高等教育出版社,2005:25-40.
  • 3LARRANAGA J L P. Estimation of distribution algorithms, a new tool for evolutionary computation [ M ]. Kluwer Academic Pub- 1ishers,2002.
  • 4MUHLENBEIN H, PAASS G. From recombination of genes to the estimation of distributions I. Binary Parameters [ C] //Proc. PPSN IV, Berlin, 1996 : 178 -187.
  • 5BALUJA S. Population-based incremental learning:a method for integrating genetic search based function optimization and com- petitive leaming [R ]. Technical Rep. CMU-CS-94-163, Pittsburgh, PA: Carnegie Mellon University, 1994.
  • 6ABDOLIHZADEH A, REYNOLDS A, CHRISTIE M. CORNED. Estimation of distribution algorithms applied to history matc- hing[ J ]. SPE Journal,2013,18 (3) :508-517.
  • 7RICHARDABRUALDI.组合数学[M].冯舜玺,等,译.北京:机械工业出版社,2001.
  • 8NELSON R B. An Introduction to Copula [M]. New York: Springer-Vedga, 1999.
  • 9徐艳兰,王传玉.基于类函数的二元的构造[C]∥第四届中国智能计算大会,北京,2010:234-239.
  • 10陈崇双,何平,马利琼.阿基米德Copula生成元的复合构造研究[J].西南民族大学学报(自然科学版),2008,34(6):1145-1148. 被引量:4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部