期刊文献+

基于改进粒子群算法的分数阶系统辨识方法 被引量:4

An Identification Method Based on an Improved PSO for Fractional-order System
下载PDF
导出
摘要 为获取精确的分数阶系统模型,本文利用惯性权值自适应律来改进基本粒子群算法,基于所改进的粒子群算法提出了一种分数阶系统辨识方法,并选取实际系统与辨识系统的输出误差平方和为目标函数,实现了分数阶模型参数和阶次的同时辨识,适用于成比例和不成比例分数阶系统辨识。仿真结果表明了算法的有效性,辨识结果精度较高。 In order to obtain the accurate model of fractional order system,the basic particle swarm optimization algorithm was improved by using the inertia weight adaptive law. A scheme of fractional order system identification based on the improved particle swarm optimization was proposed in this paper. The fitness function was the sum of devia tions of output of the actual system and the identification system. This method can identify both the model parameter and the fractional order,and can be applicable to the commensurate rate and non-commensurate rate fractional-order systems. A number of numerical simulations were illustrated to validate the concept and had high accuracy of identification.
出处 《太原科技大学学报》 2014年第3期202-206,共5页 Journal of Taiyuan University of Science and Technology
基金 山西省自然科学基金项目(2012011027-4)
关键词 分数阶系统辨识 分数阶微积分 分数阶系统 粒子群算法 fractional-order system identification, fractional calculus, fractional-order system, particle swarm optimization algorithm
  • 相关文献

参考文献12

  • 1OLDHAM K B. Fractional differential equations in electro-chemistry[ J]. Advances in Engineering Software,2010,41 ( 1 ) :9-12.
  • 2GABANO J D, POINOT T. Fractional modeling and identification of thermal systems [ J ]. Signal Processing, 2011,91 ( 3 ) : 531-541.
  • 3MAGIN R L. Fractional calculus models of complex dynamics in biological tissues[ J]. Computers & Mathematics with Applica- tions ,2010,59 (5) : 1586-1593.
  • 4桑海,赵志诚,孟香,张井岗.交流伺服系统的一种PIλDμ控制器设计方法[J].太原科技大学学报,2013,34(6):406-409. 被引量:5
  • 5苏密勇,谭永红,王子民,秦建华.同元次分数阶模型的一种具有稳定约束的频域辨识算法[J].四川大学学报(工程科学版),2012,44(2):130-134. 被引量:2
  • 6ZHANG X, CHEN Y Q. Remarks on fractional order control systems [ C ]//American Control Conference (ACC). Montreal, Can- ada,2012:5169-5173.
  • 7LI W, PENG C, WANG Y. Identifying the fractional-order systems with frequency responses:A maximum likelihood algorithm [ C ]//International Conference on Radar. Cheng Du, China,2011,2 : 1943-1948.
  • 8ZENG L, CHENG P, YONG W. Subspace identification for commensurate fractional order systems using instrumental variables [ C ]//Proceedings of the 30th Chinese Control Conference (CCC). Yantai, China, 2011 : 1636 -1640.
  • 9LIU D Y, LALEG-KIRATI T M, GIBARU O, et al. Identification of fractional order systems using modulating functions method [ C ]//American Control Conference ( AC C ). Washington DC, USA, 2013 : 1679 - 1684.
  • 10NAZARIAN P, HAERI M. Identification of fractional order model structures using conversion of infinite terms of a response to finite terms [ C ]//7th International Conference on Electrical and Electronics Engineering (ELECO). Bursa, Turkey,2011:391- 395.

二级参考文献20

  • 1李远禄,于盛林.非整数阶系统的频域辨识法[J].自动化学报,2007,33(8):882-884. 被引量:15
  • 2刘金琨.先进PID控制MATLAB仿真[M].3版.北京:电子工业出版社,2011.
  • 3Westerlund S,Ekstam L.Capacitor theory[J].IEEE Trans-actions on Dielectrics and Electrical Insulation,1994,1(5):826-839.
  • 4Sabatier J,Agrawal O P,Tenreiro Machado J A.Advances infractional calculus:theoretical developments and applicationsin physics and engineering[M].Berlin:Germany SpringerVerlag,2007:361-416.
  • 5Battaglia J L,Le Lay L,Batsale J C,et al.Heat flow estima-tion through inverted non-integer identification models[J].International Journal of Thermal Science,2000,39(3):374-389.
  • 6Bayat F M,Afshar M.Extending the root-locus method tofractional-order systems[J].Journal of Applied Mathemat-ics,2008,2008,doi:10.1155/2008/528934.
  • 7Malti R,Victor S,Oustaloup A.Advances in system identifi-cation using fractional models[J].Comput Nonlinear Dy-nam,2008,3(2):021401,doi:10.1115/1.2833910.
  • 8Pintclon R,Guillaume P.Parametric identification of transferfunctions in the frequency domain,a survey[J].IEEE Transac-tion on Automatic Control,1994,39(11):2245-2260.
  • 9Bruls J,Chou C T,Haverkamp B R J,et al.Linear and non-linear system identification using separable least-squares[J].European Journal of Control,1999,5(1):116-128.
  • 10PODLUBNY I. Fractional-order systems and PID-controllers [ J]. IEEE Transaction on Automatic Control, 1999,44 (1): 208-214.

共引文献5

同被引文献49

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部