期刊文献+

一种故障相关多单元系统可靠性分析 被引量:2

Reliability Analysis for a Multi-unit System with Failure Rate Interaction
下载PDF
导出
摘要 可靠性分析是工程中改进和优化系统的重要依据。结合实际问题,提出由一个主用单元和负荷分担故障率时变的n中取m表决系统构成的多单元系统,存在第I类故障相关关系。通过系统分析,得出主要单元故障率函数,分析系统状态,利用马尔科夫过程原理,建立一个一阶线性微分方程组,通过求解方程得出系统瞬态可用度及可靠度。 In order to improve and optimize the systems of engineering,reliability analysis is proposed. According to the practical problems,a multi-unit system with one dominant unit and numerous secondary units is advanced,in which,the secondary units take form up to a m-out-of-n voting system with load-sharing and time-varying,and the type-I failure interaction is existed between the dominant unit and m-out-of-n voting system. Through researching on the system,failure rate function of dominant unit is derived. Using the properties of Markov process,a first-order linear differential equations is established,after that,the transient availability and reliability of the system can be solved.
出处 《火力与指挥控制》 CSCD 北大核心 2014年第6期104-107,共4页 Fire Control & Command Control
关键词 可靠性 故障相关 表决系统 故障状态 马尔科夫过程 reliability failure interaction voting system failure station Markov process
  • 相关文献

参考文献15

  • 1Papazoglou L A. Semi-Markovian Reliability Model for sys- tems with Testable Components and General Test/outage Times[ J ].Reliab Eng Syst Saf, 2000,68( 1 ): 121-133.
  • 2Saldanha P L C, Simone E A D, Melo P F F E. An Applica- tion of non-homogeneous Poisson Point Processes to the Re- liability Analysis of Service Water Pumps[J]. Nucl Eng Des, 2001,210(1-3): 125-133.
  • 3Percy D F. Bayesian Enhanced Strategic Decision Making for Reliability[ J ]. Eur J Oper Res, 2002,139( 1 ) : 133-145.
  • 4Marseguerra M, Zio E, Podofillini L. Condition-based Main- Tenance Optimization by Means of Genetic Algorithms and Monte Carlo Simulation [J]. Reliab Eng Syst Saf,2002,77 (2) : 151-165.
  • 5Gilchrist W. Modding Failure Modes and Effects Analysis [ J ]. Int J Qual Reliab Manage, 1993,10(5 ) : 16-23.
  • 6Murthy D N P,Nguyen D G. Study of a Muhi-component System with Failure Interaction [ J ].Eu J Oper Res, 1985,21 : 330-338.
  • 7Murthy D N P, Nguyen D G.Study of Two-component System with Failure Interaction [J].Naval Res Logist,1985 (10): 239-247.
  • 8Lai M T.A Discrete Replacement Model for a Two-unit Paral- lel System Subject to Failure Rate Interaction [J].Qual Quant, 2009,43 : 471-479.
  • 9Romulo I Z,Christophe B. On the Inspection Policy of a Two-component Parallel System with Failure Interaction [J ]. Reliability Engineering and System Safety,2005,88 : 99-107.
  • 10Lai M T.Periodical Replacement Model for a Multi-unit Sys- tem Subject to Failure Rate Interaction [J ].Quality & Quan- tity, 2007,41 : 401-411.

二级参考文献11

  • 1汤胜道,汪凤泉.失效率随时间而变的n中取k表决系统可靠性分析[J].系统工程学报,2005,20(5):555-558. 被引量:19
  • 2郑骏.串联、并联、k/n(G)系统的Bayes可靠性分析[J].系统工程与电子技术,1996,18(6):74-80. 被引量:8
  • 3ELMER E A L.Load-capacity interference model for common-model failure in 1-out-2:G systems[J].IEEE Trans Reliability,2001,50(1):47-51.
  • 4SHAO Jia-jun,LAMBERSON L R.Modeling a shared-load k-out-of-n:G system[J].IEEE Trans Reliability,1991,40(2):205-208.
  • 5Zhang tie-ling,Xie min.Availability and reliability of k-out-(M+N):G warm standby systems[J].Reliability Engineering and System Safety,2006,91:381-387.
  • 6Ilyer R K, Rosetti D D. A measurement-based model for workload dependency of CPU errors[J]. IEEE Trans. Computers, 1995,35(5): 511-519.
  • 7Lewis E E. A load-capacity inference model for common-model failures in-out-of-2:G systems[J]. IEEE Trans. Reliability, 2001,50(1):47-51.
  • 8Liu Huamin. Reliability of a load-sharing κ-out-of-n: G system: non-iid components with arbitrary distributions[J]. IEEE Trans.Reliability, 1998, 47(3): 279-284.
  • 9Shao J, Lamberson L R. Modeling a shared-load κ-out-of-n: G system[J]. IEEE Trans. Reliability, 1991, 40(2): 205-208.
  • 10Scheuer E M. Reliability of an m-out-of-n system when component failure induces higher failure rates in survivors[J]. IEEE Trans. Reliability, 1988, 37(1): 73-74.

共引文献203

同被引文献27

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部