摘要
利用MV-代数的自同态,将MV-代数上的(⊙,)导子和(Θ,⊙)导子进行了推广,引入了f导子和g导子,研究了它们的相关性质。得到了g导子d的不动点集Fd(M)g是M的理想;保序的f导子d的不动点集Fd(M)f是M的理想,并用g导子的相关性质刻画了布尔代数和线性布尔代数。最后讨论了f导子和g导子之间的关系。
Using the endomorphism of MV-algebra, the notions of f derivations and g derivations of MV-algebras are introduced, which extend (⊙, )-derivations and ( ,⊙)-derivations, respectively.And some related properties are investigated.Moreover, the set Fd (M) g of all fixed points for a g derivation d is proved to be an ideal of M and the set Fd (M) f of all fixed points for an isotone f derivation d is proved to be an ideal of M.Furthermore, characterizations of Boolean algebras and linear Boolean algebras are derived by properties of g derivations.Finally, the relationships be-tween f derivations and g derivations are discussed.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2014年第6期50-56,共7页
Journal of Shandong University(Natural Science)
基金
陕西省教育厅科研计划项目(2013JK0562)
西安石油大学青年科技创新基金资助项目(2012QN012)