期刊文献+

一种基于断点处边缘方向保持假设的闭合轮廓提取方法 被引量:2

Closed Contour Extraction Based on An Ending Point's Edge Direction Preserving Assumption
下载PDF
导出
摘要 文中提出了一种新颖的闭合轮廓提取方法.分析了当GVF Snake模型处理边缘断裂的图像时,存在无法提取目标原始轮廓信息,尤其是目标边角信息的问题.在GVF外力场演化的能量模型的基础上,基于保持断点处边缘原方向的假设,提出了一种新的具有边角保持特性的能量模型,由此模型得到了边角保持GVF(CP-GVF)外力场.CP-GVF外力场解决了当目标轮廓发生断裂时断点对于GVF外力场的影响问题,能够根据断点处的边缘方向信息,以保持该边缘方向的方式恢复目标轮廓中丢失的边角信息,从而恢复这类目标的原始形状.不同边缘结构的仿真图像和真实图像的实验结果验证了算法的性能. This paper presents a novel closed contour extraction method.When dealing with images with broken edges,the GVF Snake model has the drawback of being unable to extract the contour of the object's original shape,especially the corner information.Based on the energy model that derives the GVF field and an ending point's edge direction preserving assumption,this paper proposes a new Corner Preserving energy minimization model that can derive a new vector field called Corner Preserving GVF(CP-GVF) field.The CP-GVF field can solve the drawback of GVF field in the way that the lost corner information of the original edge map can be recovered according to the edge direction near the ending point.Therefore,the object's original shape is recovered in the CP-GVF field.Various synthetic images with different edge structures and real images have been tested to show the validity of the proposed method.
出处 《计算机学报》 EI CSCD 北大核心 2014年第6期1335-1341,共7页 Chinese Journal of Computers
基金 国家自然科学基金(61375032)资助~~
关键词 闭合轮廓提取 GVF SNAKE模型 图像分割 形状恢复 closed contour extraction GVF snake model image segmentation shape recovery
  • 相关文献

参考文献15

  • 1Sappa A D.Unsupervised contour closure algorithm for range image edge-based segmentation.IEEE Transactions on Image Processing,2006,15(2):377-384.
  • 2Sappa A D,Vintimilla B X.Cost based closed contour repre sentations.Journal of Electronic Imaging,2007,16(2):1-9.
  • 3Canny J.A computational approach to edge detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 4Shih F Y,Cheng S X.Adaptive mathematical morphology for edge linking.Information Sciences,2004,167(1-4):9-21.
  • 5Topal C,Akinlar C.Edge drawing:A combined real-time edge and segment detector.Journal of Visual Communication and Image Representation,2012,23(6):862-872.
  • 6Farag A A,Delp E J.Edge linking by sequential search.Pattern Recognition,1995,28(5):611-633.
  • 7Aubert G,Kornprobst P.Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations.2nd Edition.New York:Springer,2006.
  • 8Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models.International Journal of Computer Vision,1988,1(4):321-331.
  • 9Xu C,Prince J L.Snakes,shapes,and gradient vector flow.IEEE Transactions on Image Processing,1998,7(3):359-369.
  • 10Wu Y,Wang Y,Jia Y.Adaptive diffusion flow active contours for image segmentation.Computer Vision and Image Understanding,2013,117(10):1421-1435.

二级参考文献27

  • 1Zhang Y. Advances in Image and Video Segmentation. Her- shey, PA; IRM Press, 2006.
  • 2Osher S, Sethian J A. Fronts propagating with curvature- dependent speed: Algorithms based on Hamilton-Jacobi for- mulation. Journal of Computational Physics, 1988, 79 (1) : 12-49.
  • 3Osher S, Fedkiw R. Level Set Methods and Dynamics Im- plicit Surfaces. New York: Springer, 2003.
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision, 1988: 1(4): 321-331.
  • 5Xu C, Prince J L. Snake, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 1998, 7 (3): 359- 369.
  • 6Suri J S, Liu K, Singh S, Laxminarayan S N, Zeng X, Re- den L. Shape recovery algorithms using level sets in 2D/3D medical imagery.. A state-of-the-art review. IEEE Transac- tions on Information Technology in Biomedicine, 2002, 6(1) : 8-28.
  • 7Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 8Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision9 1997, 22 (1) : 61-79.
  • 9Chopp D L. Computing minimal surfaces via level set curva- ture flow. Journal of Computational Physics, 1993, 106(1): 77-91.
  • 10Li C, Xu C, Gui C, Fox M D. Level set evolution without re-initialization: A new variational formulation//Proeeedings of the IEEE Conference on Computer Vision and Pattern Rec- ognition. San Diego, USA, 2005: 430-436.

共引文献43

同被引文献23

  • 1冈萨雷斯,伍兹.数字图像处理[M].3版.北京:电子工业出版社,2010:334-398.
  • 2Perez P. JetStream: probabilistic contour extraction with particle[ C]. Proceedings of International Conference on Computer Vision, Vmwouver, 2001 ,11:524- 531.
  • 3Yang J, Li X. Directional morphology and its application in boundary detection[ J]. Image Processing and Application, 1995 (2) :410.
  • 4Tian Y Y, Duan F Q, Zhou M Q, et al. Active contour model combining region and edge information[J]. Machine Vision and Applications,2013,24( 1 ) :47 -61.
  • 5Cheng C, Knschan A, Chen C H, et al. Outdoor scene image segmentation based on background recognition and pereeptual organization [ J ]. IEEE Transactions on Image Processing,2012,21 ( 3 ) : 1007 - 1019.
  • 6Cheng M M, Zhang G X, Mitra N J, et al. Global contrast based salient region detection [ J ]. Computer Vision and Pattern Recognition ( CVPR ) ,2011 , 37 ( 3 ) :409 - 416.
  • 7Ojala T, Harwood M D, Pietikainen M. A comparative study of texture measures with classification based on feature distributions [ J ]. Pattern Recognition, 1996,29 ( 1 ) :51 - 59.
  • 8Stahl J S, Wang S. Edge grouping combining boundary and region information [ J ]. IEEE Transactions on Image Processing, 2007,16(10) :2590 -2606.
  • 9Elder J, Goldberg R. Ecological statistics of gestalt laws for the perceptual organization of contours[ J]. Journal of Vision,2002, 2(4) :324 -353.
  • 10Cook W, Rohe A. Computing minimum-weight perfect matchings [ J ]. Journal on Computing, 1999,11 (2) :138 -148.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部