摘要
提出了一种获取高分辨率大视场红外目标图像的改进优化方法.相比较于传统方法中存在的大视场和高分辨率之间的矛盾,设计了整机摆扫及同步像移补偿的实验方案.详细分析了精确的速度控制和像移补偿对于整个系统成功实现所起的决定作用,并对这两部分进行了优化设计.实验和仿真结果具有较好的一致性,从而验证该设计方法在工程上的可实现性.实验结果显示,扫描控制的速度误差为0.19%。
An optimized method was proposed to get high resolution and wide-view images of infrared target. To overcome the shortcoming in the traditional ways that had the contradiction between wide-view and high resolution, this experiment scheme was designed that adopted pendulum scanning of whole system along with synchronal image motion compensation. It was shown that the precise speed control and image motion compensation performed decisive roles for the successful achievement of the whole system. Whats more, optimized design had been made for these two parts. The experiment and simulation results are in good agreement. Accordingly, the engineering feasibility of the proposed design method has been validated. The experiment results show that the velocity error of the system is 0.19%. After synchronal image motion compensation, the obtained infrared images have both wide-view and high resolution.
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2014年第3期283-288,共6页
Journal of Infrared and Millimeter Waves
基金
国家973重点基础研究发展计划项目(2009CB723900)~~
关键词
红外图像
整机摆扫
同步像移补偿
infrared image, pendulum scanning of whole mechanism, synchronal image motion compensation