期刊文献+

一种基于集成学习和特征融合的遥感影像分类新方法 被引量:11

A novel remotely sensed image classification based on ensemble learning and feature integration
下载PDF
导出
摘要 针对多源遥感数据分类的需要,提出了一种基于全极化SAR影像、极化相干矩阵特征、光学遥感影像光谱和纹理的多种特征融合和多分类器集成的遥感影像分类新方法.对全极化PALSAR数据进行预处理和极化相干矩阵特征提取,利用灰度共生矩阵计算光学和SAR影像的对比度、逆差距、二阶距、差异性等纹理特征参数,并与光谱特征结合,形成6种组合策略.利用集成学习方法对随机森林分类器、子空间分类器、最小距离分类器、支持向量机分类器、反向传播神经网络分类器等分类器进行组合,对不同组合策略的遥感影像特征集进行分类.结果表明提出的基于多种特征和多分类器集成的新方法很好地利用了主被动遥感数据在不同地表景观类型提取上的潜力,综合了多种算法的优势,能够有效地提高总体精度和各类别的分类精度. To make full use of the multi-source remotely sensed data for classification, a novel method was proposed based on the integration of full-polarization SAR (HH, HV, VH, VV) data, features of polarization coherence matrix, spectral features provided by optical data, texture features extracted from optical and SAR data and multi-classifier ensemble. Preprocessing for full-polarization data was performed and polarimetric features are extracted from polarization coherence matrix. Spatial textural features including contrast, dissimilarity, second moment, etc., are extracted from PALSAR full-polarization data and optical image using Grey-level Co-occurrence Matrix (GLCM) method. Features of polarization coherency matrix, full-polarization SAR channels, spectral and textures are integrated by 6 strategies. Some well-known classification techniques, including Support Vector Machine (SVM), Minimum Distance (MD), Back Propagation Neural Network (BPNN), Multi-Layer Perceptron (MLP), Random Subspace (RSS), Random Forest (RF) classifiers were selected to test different combination strategies. The parallel and sequential ensemble learning techniques were selected to integrate single classifier for land cover classification. The results indicate that the proposed approach integrating multi-source, multi-features and multi-classifier strategy can make full use of the potential of optical and SAR remotely sensed data for landscape types, and improve the overall accuracy and the accuracy of single land cover type effectively.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2014年第3期311-317,共7页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金项目(NSFC-41171323) 江苏省自然科学基金(201021539)项目 江苏省研究生培养创新工程基金项目(CX09B_115Z)~~
关键词 光谱特征 纹理特征 极化特征 集成学习 特征融合 分类 spectral features, textural features, polarimetric features, ensemble learning, feature integration, classification
  • 相关文献

参考文献20

  • 1Du Peijun, Liu Pei, Gamba P. Urban spatial and temporal changes analysis based on spectral, polarimetric, temporal, spatial dimensions and decision level fusion[C].1st EARSel Workshop on temporal analysis of satellite images, Mykonos, Greece, 2225 May 2012, 58-64.
  • 2余凡,李海涛,万紫.结合贝叶斯理论和MRF的主被动遥感数据协同分类[J].遥感学报,2012,16(4):809-825. 被引量:2
  • 3Brunner D, Lemoine G, Bruzzone L, et al.Building Height Retrieval From VHR SAR Imagery Based on an Iterative Simulation and Matching Technique[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2010,48(3): 1487-1504.
  • 4Zhong Ping, Wang Runsheng. A Multiple Conditional Random Fields Ensemble Model for Urban Area Detection in Remote Sensing Optical Images[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2007,45(12): 3978-3988.
  • 5Lehmann A, Caccetta A, Zhou Z, et al. Joint Processing of Landsat and ALOS-PALSAR Data for Forest Mapping and Monitoring[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2012,50(1): 55-67.
  • 6Sportouche H, Tupin F, Denise L. Building detection by fusion of optical and SAR features in metric resolution data[C], Geoscience and Remote Sensing Symposium, Cape Town, 12-17 July 2009, IV769IV772.
  • 7Brunner D, Lemoine G, Bruzzone L. Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery[J]. Geoscience and Remote Sensing. IEEE Transactions, 2010,48(5): 2403-2420.
  • 8Gamba P, DellAcqua F, Dasarathy V. Urban remote sensing using multiple data sets: Past, present, and future[J]. Information Fusion, 2005,6(4): 319-326.
  • 9Dong Jiang, Zhuang Dafang, Huang Yaohuan et al. Advances in Multi-Sensor Data Fusion: Algorithms and Applications[J]. Sensors, 2009,9(10): 7771-7784.
  • 10Zhang Hongsheng, Zhang Yuanzhi, Lin Hui. Urban land cover mapping using random forest combined with optical and SAR data[C]. Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2227 July 2012, 6809-6812.

二级参考文献30

共引文献2

同被引文献73

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部