期刊文献+

一种改进的基于软判决自回归模型图像内插算法

Improved Image Interpolation Algorithm Based on Auto-Regressive Model and Soft-Decision Estimation
下载PDF
导出
摘要 提出一种改进的基于软判决自回归模型图像内插算法,分为正则化权值训练和图像内插两部分。在训练部分,根据局部窗口特征和其对应的最优正则化权值建立字典。在图像内插部分,利用加权最小二乘法估计自回归模型参数,并通过查找字典中距离当前局部窗口最近的样本获得最优正则化权值,然后使用软判决估计重建图像内插值。同时,使用EM算法修正估计出的模型参数和图像内插值。实验结果表明,与其它算法相比,所提的内插算法具有更好的主观和客观效果。 An improved image interpolation algorithm is proposed denpending on the auto-regressive (AR) model and the soft-decision estimation,including regularization weight training phase and image interpolation phase.During the regularization weigh training phase,a dictionary is built according to the local patch feature and the optimal regularization weight.During the image interpolation phase,AR model parameters are predicted by the weighted least-squares estimation,and the optimal regularization weight is obtained by searching the nearest sample in the dictionary.Then,the missing pixels are reconstructed by the soft-decision estimation.Furthermore,model parameters and interpolated pixels are both corrected by an expectationmaximization (EM) algorithm.Experimental results show that the proposed algorithm can yield better performance than other leading interpolation algorithms in terms of subjective and objective effects.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2014年第3期28-35,共8页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60802021 61172118 61271240) 江苏省高校自然科学重点研究项目(13KJA510004) 江苏省自然科学基金青年基金(BK20130867) 江苏省高校自然科学研究(12KJB510019)资助项目
关键词 图像内插 加权最小二乘法 软判决估计 自回归模型 EM算法 image interpolation weighted least-squares estimation soft-decision estimation auto-regressive model expectation-maximization(EM) algorithm
  • 相关文献

参考文献12

  • 1YANG Bing, GAO Zhiyong, ZHANG Xiaoyun, et al. Principal com- ponents analysis based edge-directed image interpolation [ C ] // IEEE International Confereuee on Multimedia and Expo. 2012: 580 - 585.
  • 2ZHOU D, SHEN X, DONG W, et al. Image zooming using directional cubic convolution interpolation [ J ]. IEEE Transactions on Image Processing,2012,6 (6) :627 - 634.
  • 3LI Min, NGUYEN T Q. Markov random field model based edge-di- rected image interpolation [ J ]. IEEE Transactions on Image Pro- cessing ,2008,17 (7) : 1121 - 1128.
  • 4WANG Qing,WARD R K. A new orientation adaptive interpolation method [ J ]. IEEE Transactions on Image Processing,2007,16 (4) : 889 - 900.
  • 5WU Xiaolin,ZHANG Xiangjun. Image interpolation using texture o- rientation map and kernel fisher discriminant [ C ]//IEEE Interna- tional Conference on Image Processing. 2005,1:49 -52.
  • 6ZHU Ying, SCHWARTZ S C, ORCHARD M T, et al. Wavelet do- main image interpolation via statistical estimation [ C ] // Internation- al Conference on Image Processing. 2001,3:840 - 843.
  • 7MALLAT S,YU G S. Super-resolution with sparse mixing estimators [ J ]. IEEE Transactions on Image Processing, 2010,19 ( 11 ) : 2889 - 2900.
  • 8ZHANG Xiangjun, WU Xiaolin. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation [ J ]. IEEE Transactions on Image Processing,2008,17 (6) :887 - 896.
  • 9LI Xin, ORCHARD M T. New edge directed inter-polation [ J ]. IEEE Transactions on Image Processing, 2001, 10 ( 10 ) : 1521 - 1527.
  • 10DONG Weisheng, ZHANG Lei, LUKAC R, et al. Sparse representa- tion based image interpolation with nonlocal autoregressive model- ing [ J ]. IEEE Transactions on Image Processing, 2013,22 ( 4 ) : 1382 - 1394.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部