期刊文献+

一类具有可变号系数的p-Laplace方程周期解的存在性

Existence of Periodic Solutions for a Kind of p-Laplacian Equations with Variable Coefficients
下载PDF
导出
摘要 研究了如下一类p-Laplace微分方程(φp(x'(t)))'+β(t)g(x(t))=e(t)周期解的存在性问题,其中β(t)在区间[0,T]上可以变号,并且允许∫T0β(t)dt=0,这与已有的结论是不同的。通过应用临界点理论,获得了一个新结果。最后,通过一个例子和几个注解来说明理论结果的有效性。 The existence of periodic solutions for a kind of p-Laplacian equations is studied,such as ψρ(x'(t)))' +β(t)g(x(t)) =e(t),where β(t) can change sign over [0,T],and ∫0Tβ(t)dt =0 is possible.Such problem is different from the previous research results.Depending on the critical point theory we obtain a new result for such problem.Moreover,an example and some remarks are presented to verrify the theoretical results.
作者 王正新
出处 《南京邮电大学学报(自然科学版)》 北大核心 2014年第3期131-134,共4页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61304169) 江苏省自然科学基金(BK20130857) 江苏省高校自然科学研究项目(13KJB110022) 南京邮电大学校科研项目(NY213052)资助项目
关键词 周期解 ρ-Laplace方程 变号 临界点理论 periodic solutions ρ-Laplacian equation variable sign critical point theory
  • 相关文献

参考文献10

  • 1GAO Fabao, LU Shiping. Periodic solutions for a Rayleigh type e- quation with a variable coefficient ahead of the nonlinear term [ J ]. Nonlinear Analysis : Real World Applications ,2009,10:254 - 258.
  • 2LIANG Feng, GUO Lixiang, LU Shiping. New results of periodic so- lutions for Rayleigh type p-Laplacian equation with a variable coeffi- cient ahead of the nonlinear term [J]. Nonlinear Analysis:Theory, Methods & Applications ,2009,70:2072 - 2077.
  • 3WANG Zhengxin, CAO Jinde, LU Shiping. On the existence of peri- odic solutions for a p-Laplacian neutral functional differential equa- tion with timevarying operator[ J ]. Differential Equations and Appli- cations,2011,3:189 -207.
  • 4LU Shiping, GUI Zhanjie. On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay [ J]. Journal of Mathematical Analysis and Applications,2007,325:685 -702.
  • 5XU Bo,TANG Chunlei. Some existence results on periodic solutions of ordinary p-Laplacian systems [ J ]. Journal of Mathematical Anal- ysis and Applications,2007,333 : 1228 - 1236.
  • 6MA Shiwang,ZHANG Yuxiang. Existence of infinite many periodic solutions for ordinary p-Laplacian systems [ J ]. Journal of Mathe- matical Analysis and Applications ,2009,351:469 -479.
  • 7RAUL M ,JEAN M. Periodic solutions for nonlinear systems with p- Laplacian-like operators [ J]. Journal of Differential Equations, 1998,45:367 -393.
  • 8WANG Zhengxin, QIAN Longxia, LU Shiping. On the existence of periodic solutions to a fonrth-order p-Laplacian differential equation with a deviating argument [ J ]. Nonlinear Analysis:Real World Ap- plications ,2010,11 : 1660 - 1669.
  • 9GUO Zhiming,YU Jianshe. Multiplicity resuhs for periodic solutions to delay differential equations via critical theory [ J]. Journal of Dif- ferental Equations ,2005,218 : 15 - 35.
  • 10JEAN M, WILLEM M. Critical Point Theory and Hamilton Systems [ M ]. New York : Springer-Verlag, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部