期刊文献+

Chloride Ion Transmission Model under the Drying-wetting Cycles and Its Solution 被引量:2

Chloride Ion Transmission Model under the Drying-wetting Cycles and Its Solution
下载PDF
导出
摘要 The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy's Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion. The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the dryingwetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy's Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期445-450,共6页 武汉理工大学学报(材料科学英文版)
基金 Funded by the National Natural Science Foundation of China(Nos.51278495,51174291) the Open Fund of Nation Engineering Laboratory for High Speed Railway Construction(No.HSR2013011)
关键词 under the drying-wetting cycles the chloride ion transmission model the group explicit scheme seepage velocity under the drying-wetting cycles the chloride ion transmission model the group explicit scheme seepage velocity
  • 相关文献

参考文献6

二级参考文献41

共引文献93

同被引文献28

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部