期刊文献+

Jaulent-Miodek方程的Painlevé可积性及精确解 被引量:1

Painlevé Integrability and Exact Solutions of the Jaulent-Miodek Equation
下载PDF
导出
摘要 利用基于WTC方法的Kruskal简化法判别了一类特殊的非线性耦合Jaulent-Miodek方程在三种情形下具有Painlevé可积性,一种情形下不具有Painlevé可积性.尽管Jaulent-Miodek方程在一种情形下不具有Painlevé可积性,仍可以通过推广的Painlevé标准截断展开和Painlevé非标准截断展开方法求得非线性耦合Jaulent-Miodek方程行波形式的精确解. The Painleve;integrability of a special coupled Jaulent-Miodek equation was studied by using the Kruskal’s simplification of WTC method.The following conclusion was obtained:the Jaulent-Miodek equation is of Painleve; integrability in three cases,and is of no Painleve; integrability in one case.Even though in that case,the equation is of no Painleve;integrability,new exact solutions of the coupled Jaulent-Miodek equation can be constructed by using the Painleve; standard and nonstandard truncation expansion.
出处 《上海理工大学学报》 CAS 北大核心 2014年第3期217-222,共6页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11201302 11071164) 上海市重点学科建设资助项目(XTKX2012)
关键词 PAINLEVE 可积性 PAINLEVE 标准截断展开 Jaulent-Miodek 方程 精确解 Painleve integrability Painleve standard truncation expansion Jaulent-Miodek equation exact solutions
  • 相关文献

参考文献17

  • 1张玲,桑本文,胡恒春.耦合mKdV系统的非奇异正子解、负子解及复子解[J].上海理工大学学报,2012,34(1):76-80. 被引量:4
  • 2张卫国,东春彦.广义组合KdV方程与广义组合KdV-Burgers方程孤波解的条件稳定性[J].上海理工大学学报,2006,28(4):307-316. 被引量:3
  • 3Weiss J, Tabor M, Carnevale G. The Painlev property for partial differential equations [J ]. Journal of Mathematical Physics, 1983,24(3) : 522 - 527.
  • 4Estvez P G, Gordoa P R. Darboux transformations via Painlev6 analysisJ-J]. Inverse Problems, 1997,13 (3) 939 - 957.
  • 5Est6vez P O,Hernez O A. Non-isospectral problem in (2 + 1)dimensions[J]. Journal of Physics A: Mathema- tical and C-eneral,2000,33(10) :2131 - 2143.
  • 6Hu H C, Liu Q P. New Darboux transformation for Hirota-Satsuma coupled KdV system [J]. Chaos, Solitons and Fractals, 2003,17 (5) : 921 - 928.
  • 7Alagesan T, Uthayakumar A, Porsezian K. Painlev analysis and Bcklund transformation for a three- dimensional Kadomtsev-Petviashvili equation [ J ]. Chaos Solitons and Fractals,1997,8(6) :893- 895.
  • 8Pickering A. A new truncation in Painlev analysis [J]. Journal of Physics A: Mathematical and General, 1993,26(17) :4395- 4405.
  • 9Conte R. Invariant Painlev analysis of partial differential equations[J]. Physics Letters A, 1989,140 (7) :383 - 390.
  • 10Lou S Y. Extended Painlev expansion, nonstandard truncation and special reductions of nonlinear evolution equations[J]. Zeitschrift far Naturforschung A, 1998,53(8) :251 - 258.

二级参考文献33

共引文献12

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部