摘要
利用基于WTC方法的Kruskal简化法判别了一类特殊的非线性耦合Jaulent-Miodek方程在三种情形下具有Painlevé可积性,一种情形下不具有Painlevé可积性.尽管Jaulent-Miodek方程在一种情形下不具有Painlevé可积性,仍可以通过推广的Painlevé标准截断展开和Painlevé非标准截断展开方法求得非线性耦合Jaulent-Miodek方程行波形式的精确解.
The Painleve;integrability of a special coupled Jaulent-Miodek equation was studied by using the Kruskal’s simplification of WTC method.The following conclusion was obtained:the Jaulent-Miodek equation is of Painleve; integrability in three cases,and is of no Painleve; integrability in one case.Even though in that case,the equation is of no Painleve;integrability,new exact solutions of the coupled Jaulent-Miodek equation can be constructed by using the Painleve; standard and nonstandard truncation expansion.
出处
《上海理工大学学报》
CAS
北大核心
2014年第3期217-222,共6页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(11201302
11071164)
上海市重点学科建设资助项目(XTKX2012)