期刊文献+

基于多策略差分进化的元胞多目标遗传算法 被引量:13

Cellular multi-objective genetic algorithm based on multi-strategy differential evolution
下载PDF
导出
摘要 针对现有的多目标进化算法在求解复杂的多目标优化问题时收敛性不佳和解的分布性差等问题,提出一种基于多策略差分进化的元胞多目标遗传算法。通过分析不同差分进化模式的优劣,结合元胞模型,定义了一种多策略差分协同进化的选择算子;针对当前拥挤距离评估方法存在的缺陷,引入一种基于熵的拥挤距离评估方法,同时改进了替换策略。通过12个标准测试函数进行测试,证明了新算法相对于非支配排序遗传算法、元胞多目标遗传算法和混合元胞遗传算法,不仅具有更好的收敛性和多样性,而且在解的覆盖率上得到了一定程度的提高,尤其适合于高维复杂多目标优化问题的求解。 To improve the convergence and distribution of Multi-Objective Evolutionary Algorithms (MOEAs) on solving high dimensional multi-objective optimization problems (MOPs), a cellular multi-objective genetic algorithm based on multi-strategy differential evolution was proposed. Through analyzing the different differential evolution strategies, a selection operator of multi-strategy differential evolution based on the cellular model was proposed. Aiming at the defects of the present crowding diversity measure, a new erowding diversity measure method based on entropy was introduced and the replacement policy was also improved. Through testing 12 benchmark functions, the proposed algorithm was proved to have better convergence and diversity than NSGA- Ⅱ , MOCell and CellDE, and the coverage rate for solution was also improved, which espeeially for solving high dimensional multi-objective optimization problems.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2014年第6期1342-1351,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51275274) 三峡大学2012年研究生科研创新基金资助项目(2012CX025)~~
关键词 元胞模型 多策略差分进化 多目标优化 拥挤距离评估 替换策略 cellular model; multi-strategy differential evolution; multi-objective optimization crowding diversitymeasure replacement policy
  • 相关文献

参考文献21

  • 1Li l DEB K. PRATAP A. MEYARIVAN T. A fast and elitist multi-objective genetic algorithm: NSGA- II [J].IEEE Transactions on Evolutionary Computation. 2002.6(2) : 182-197.
  • 2ZITZLER E. THIELE L. Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation. 1999.3(4) :257-271.
  • 3NEBROAJ. DURILLOJJ.LUNAF.etal. MC:x.:ell:acellular genetic algorithm for multi-objective optimization[J].International Journal of Intelligent Systems. 2009.24(7) : 726-746.
  • 4BALDUZZI F. GIUA A. MENGA G. First-order hybrid petri nets, a model for optimization and control[J] .IEEE Transactions on Robotics and Automation. 2000. 16(4) :382-399.
  • 5IORIOA W. LI X. Solving rotated multi-objective optimization problems using differential evolution [J] ' Lecture Notes in Computer Science. 2005.3339: 861-872.
  • 6DURILLO J J. NEBRO A J. LUNA F. et al. Solving threeobjective optimization problems using a new hybrid cellular genetic algorithm[J].Lecture Notes in Computer Science. 2008. 5199: 661-670.
  • 7ZHANG Qingfu, LIU Wudong, TSAND E, et al. Expensive multi-objective optimization by MOEA(D with gaussian process model[J].IEEE Transactions on Evolutionary Computation, 2010,14(3): 456-474.
  • 8KUKKONEN S, LAMPINEN J. GDE3: the third evolution step of generalized differential evolution[C]// Proceedings of IEEE Congress on Evolutionary Computation (CEC 2005). Washington, D.C. ,USA:IEEE,200S:443-4S0.
  • 9QIN A K, SUGANTHAN P N. Self-adaptive differential evolution algorithm for numerical optimization [C]//Proceedings of IEEE Congress on Evolutionary Computation (CEC 200S). Washington,D. C. , USA:lEEE,200S: 1785-1791.
  • 10QIN A K, HUANG V L, SUSANTHAN P N. Self-adaptive differential evolution algorithm for constrained real-parameter optimization[C]//Proceedings of 2006 IEEE Congress on Evolutionary Computation. Washington, D. C. , USA: IEEE, 2006: 17-24.

二级参考文献41

共引文献165

同被引文献86

引证文献13

二级引证文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部