期刊文献+

一类具有时滞的非线性SIRS传染病模型的分析

Analysis of a Delay SIRS Epidemic Model with Nonlinear Incidence Rate
下载PDF
导出
摘要 研究了一类具有时滞和非线性传染率的SIRS传染病模型,确定了模型的基本再生数,并且利用线性化、Hurwitz定理和渐进稳定判定定理分析了无病平衡点和地方病平衡点的稳定性。 This paper studies a kind of SIRS epidemic model with nonlinear incidence rate and delay. The basic reproductive number of the system is obtained, and by means of linearization, Hurwitz theorem and asymptotic stability theorem, it analyses the stability of disease-free equilibrium and endemic equilibrium.
作者 李霞
出处 《洛阳理工学院学报(自然科学版)》 2014年第3期73-77,共5页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
关键词 SIRS模型 时滞 非线性发生率 稳定性 SIRS epidemic model delay nonlinear incidence rate stability
  • 相关文献

参考文献6

二级参考文献21

  • 1付景超,井元伟,张中华,张嗣瀛.具垂直传染和连续预防接种的SIRS传染病模型的研究[J].生物数学学报,2008,23(2):273-278. 被引量:32
  • 2杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 3Beretta E, Takeuchi Y. Global stability of an SIR epidemic model with time delays[J]. J Math Biol, 1995,33 : 250- 260.
  • 4Beretta E, Takeuchi Y. Convergence results in SIR epidemic model with varying population sizes[J]. Nonl Anal, 1997,28:1909-1921.
  • 5Beretta E, Hara T, Ma W, Takeuchi Y. Global asymptotically stability of an SIR epidemic model with distributed time delay[J]. Nonl Anal,2001,47:4107-4115.
  • 6Hale J K. Theory of Functional Differential Equations[M]. Springer-Verlag, New York, 1977.
  • 7Kuang Y. Delay Differential Equations with Applications in Population Dynamics [M]. Academic Press, San Diego, 1993.
  • 8Hethcote H W. Qualitative analyses of communicable disease models[J].Math Biosci, 1976,7:335-356.
  • 9MENA-LORCA, HETHCOTE H W. Dynamic models of infectious disease as regulators of population biology[J]. J Math Biol, 1992,30 : 693-716.
  • 10GAO L, HETHCOTE H W. Disease transmission models with density-dependent demographics [J].J Math Biol, 1992,30:717-731.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部