摘要
函数图像的变换主要是指平移、翻折(轴对称)、旋转(含中心对称)、伸缩等,这是研究函数性质的重要手段和内容,在高中阶段的学习中有充分的探索与应用。函数概念的抽象性决定了它是学生学习的难点,其广泛性决定了它又是学习的重点,而图像的直观性可以降低理解的难度。数形结合,可以促进学生更好地理解与掌握函数的本质。本文通过剖析几个以函数图像变换为背景的例题,把散碎的知识、技能、思想、方法等进行列举、归纳和提炼,在解决个案的基础上,从整体上系统地把握函数图像的变换,更加接近函数的本质,也为高中进一步学习奠定良好的基础。