摘要
椭圆是到2个定点F1,F2的距离之和等于定值2a(2a〉|F1F2|)的点的轨迹,是到定点与定直线(定点不在定直线上)的距离之比等于常数e(0〈e〈1)的点的轨迹,是到2个定点的斜率之积为常数K(K〈0,K≠-1)的点的轨迹。而在压缩变换视角下,椭圆是压扁了的圆,利用这个角度,有时可以快捷地解题并看到问题的本质。定义压缩变换τ:平面x′O′γ′上的所有点横坐标不变,纵坐标变为原来的n/m倍(m〉0,n〉0,m≠,n),得到平面xOγ。显然在压缩变换τ下,平面x′O′γ′上的圆C′:x′^2+γ′^2=m^2就压缩为平面xOγ上的椭圆x^2/m^2+γ^2/n^2=1,于是我们可以利用圆的几何性质和压缩变换的性质来研究椭圆,通常研究3类问题。