期刊文献+

有纹理保护的SAR海冰图像分割 被引量:4

SAR sea ice image segmentation with texture preservation
下载PDF
导出
摘要 针对传统的马尔科夫随机场算法中模型参数估计是全局的,及此算法描述非平稳SAR海冰图像是局限的,提出一种带有纹理保护的图像分割算法.该算法以区域为研究对象,首先利用分水岭分割算法对图像进行初始分割得到基本同质的区域,使该算法由像素水平提升到区域水平,这样能减少噪声对分割结果的影响.然后使用集成了纹理信息的空间语境模型和特征模型来描述对象函数,获得更稳定的模型参数估计,使得该算法具有描述局部行为的能力,改进了空间语境模型对图像非平稳性的适应性.通过对1幅合成图像和2幅真实合成孔径雷达海冰图像进行测试,将该算法与马尔科夫随机场算法和Gaussian混合模型算法比较,结果表明,该文算法优于上述2算法,在相同的场景内该文算法在产生平滑结果的同时也能保护纹理特征. This paper proposesd an image segmentation algorithm with texture preservation in view of the traditional Markov random field (MRF) image segmentation methods, the model of parameter estimation was global,and this algorithm was inadequate that described non-stationary SAR sea ice image was limited. Sea ice regions were researched as objects. The watershed algorithm was first used to generate primitive homogeneous regions. The impact of noise on the segmentation result could therefore be reduced in the space of regions instead of pixels. The proposed method incorporated texture information of feature model and spatial context model formulated the objective functions, which had some capability of describing local behaviors and could improve the spatial context model on its adaptivity to the non- stationarity of the image. In the traditional MRF approach, its models were stationary, with model parameters estimated globally. By testing on one synthetic image and two SAR sea-ice scenes, the algorithm of the paper is compared with Gaussian mixture model algorithms and MRF-based segmentation algorithms. The comparison indicated that the algorithm of this paper was more excellent than the above-mentioned two algorithms. The algorithm could simultaneously preserve texture feature and poduce smooth segmentation results in the same scene.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第3期61-67,共7页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(41275027) 安徽高校省级自然科学研究基金资助项目(KJ2013Z228) 安徽高校省级自然科学研究重大项目(KJ2012ZD06)
关键词 纹理 图像分割 SAR图像 马尔科夫随机场 分水岭 texture image segmentation SAR image Markov random field watershed
  • 相关文献

参考文献12

  • 1Li S Z. Markov random field modeling in image analysis [ M ]. New York : Springer, 2009.
  • 2Soh L K,Tsatsoulis C, Gineris D, et al. An intelligent system for SAR sea ice image classification [ J ]. IEEE Trans Geosci Remote Sens ,2004 ,42 ( 1 ) : 229-248.
  • 3Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks [ J]. IEEE Trans Geosci Remote Sens ,2004,42 ( 7 ) : 1566-1574.
  • 4倪维平,严卫东,边辉,吴俊政,芦颖,王培忠.基于MRF模型和形态学运算的SAR图像分割[J].电光与控制,2011,18(1):32-36. 被引量:15
  • 5Deng H, Clausi D A. Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model [ J ]. IEEE Trans Geosci Remote Sens, 2005,43 (3) :528-538.
  • 6李苏祺,张广军.基于邻接表的分水岭变换快速区域合并算法[J].北京航空航天大学学报,2008,34(11):1327-1330. 被引量:22
  • 7周伟华,汪慧兰,罗斌.一种综合多种技术的SAR图像增强方法[J].安徽大学学报(自然科学版),2006,30(2):37-40. 被引量:1
  • 8Canny J A. Computational approach to edge detection[ J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1986 (8) :679-698.
  • 9卢洁,杨学志,郎文辉,左美霞,徐勇.区域GMM聚类的SAR图像分割[J].中国图象图形学报,2011,16(11):2088-2094. 被引量:16
  • 10Vicent L, Soille P. Watersheds in digital spaces:an afficient algorithm based on immersion simulations [ J 1. IEEE Trans Pattern Analysis and Machine Intelligence, 1991,13 (6) :583-598.

二级参考文献44

共引文献52

同被引文献21

  • 1Clausi D A, Yue B. Comparing co-occurrence probabilitiesand Markov random fields for texture analysis of SAR seaice imagery[J]. IEEE Transaction on Geoscience and RemoteSensing, 2004, 42(1): 215-228.
  • 2Yu Q, Moloney C, Williams F M. SAR sea-ice textureclassification using discrete wavelet transform basedmethods[C]. Proceeding of the 2002 IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS2002), 2002, 5: 3041-3043.
  • 3Soh L K, Tsatsoulis. Texture analysis of SAR sea ice imageryusing grey level co-occurrence matrices[J].IEEE Transactionon Geoscience and Remote Sensing, 1999, 37(2): 780-795.
  • 4Vincent L, Solille P. Watershed in digital spaces: an efficientalgorithm based on immersion simulations[J]. IEEE Transactionon Pattern Analysis and Machine Intelligence, 1991,13(6): 583-598.
  • 5Li S. Markov Random Field Modeling in ComputerVision[M]. New York: Springer, 2009: 108-112.
  • 6Yang X Z, Clausi D A. SAR sea ice image segmentationbased on edge-preserving watersheds[C]. Montreal Quebec,Canada, Fourth Canadian Conference on Computer andRobot Vision (CRV’07), 2007: 426-431.
  • 7Yu Q Y. Automated SAR sea ice interpretation[D]. Waterloo:University of Waterloo, 2006: 30-32.
  • 8胡召玲,李海权,杜培军.SAR图像纹理特征提取与分类研究[J].中国矿业大学学报,2009,38(3):422-427. 被引量:40
  • 9卢洁,杨学志,郎文辉,左美霞,徐勇.区域GMM聚类的SAR图像分割[J].中国图象图形学报,2011,16(11):2088-2094. 被引量:16
  • 10刘眉洁,戴永寿,张杰,任广波,孟俊敏,张晰.高分辨率全极化合成孔径雷达数据海冰二次分类方法研究[J].海洋学报,2013,35(4):80-87. 被引量:10

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部