期刊文献+

具有k个悬挂点的仙人掌图的调和指标 被引量:2

On the Harmonic Index of Cacti with k Pendent Vertices
下载PDF
导出
摘要 图G的调和指标是指G所有边uv所对应的2/[d(u)+d(v)]之和,其中d(u),d(v)分别表示顶点u,v的度.一个连通的仙人掌图G是指它的任何两个圈至多只有一个公共顶点.主要采用归纳假设法,给出了具有k个悬挂点的所有仙人掌图的调和指标的极小值,并且刻画了相应达到其极小调和指标的极图. The harmonic index of a graph G is defined as the sumof weights 2/[d(u)+d(v)] of all edges uv of G, where d(u) and d (v) are the degrees of the vertices u and v in G, respectively. A connected graph G is a cactus if any two of its cycles have at most one common vertex. In this paper, we give the minimum value for the harmonic index of cacti of order n with k pendent vertices, and the corresponding extremal graphs are also characterized.
作者 陈锦丽
出处 《闽南师范大学学报(自然科学版)》 2014年第2期7-11,共5页 Journal of Minnan Normal University:Natural Science
基金 国家自然科学基金项目(11101358 61379021) 福建省自然科学基金资助项目(2011J01026) 福建省自然科学基金青年人才创新项目(2011J05014) 福建省教育厅资助科技项目(JA11165) 闽南师范大学研究生科研立项资助项目(1300-1314)
关键词 调和指标 仙人掌图 悬挂点 harmonic index cactus pendant vertex
  • 相关文献

参考文献1

  • 1Anhua Lin,Rong Luo,Xiaoya Zha.A sharp lower bound of the Randi? index of cacti with r pendants[J].Discrete Applied Mathematics.2007(10)

同被引文献8

  • 1DIESTEL R. Graph theory: Electronic Edition 2000 [M/OL] [2015-01-10] . https://www, researchgate, net/publication/ 240024329 -Graph -Theory-Electronic -Editio-2000.
  • 2FAJTLOWICZ S. On conjectures of Graffiti-II[J]. Congr Numer, 1987,60:187 -197.
  • 3ZHONG L P. The harmonic index for graphs[J]. Applied Mathematics Letters, 2012,25(3) :561 -566.
  • 4ZHONG L. The harmonic index on unicyclic graphs[J]. Ars Combinatoria, 2012,104(104):261 -269.
  • 5DENG H Y, BALACHANDRAN S, AYYASWAMY S K,et al. On the harmonic index and the chromatic number of a graph[J] Discrete Applied Mathematics, 2013, 161 (16/17) :2740 - 2744.
  • 6CHEN J L, LV J B. On the harmonic index of cacti [J]. International Journal of Applied Mathematics and Statistics,2014, 52 (1) :72 -83.
  • 7王晓,段芳.单圈图的解析(英文)[J].华东师范大学学报(自然科学版),2009(1):13-21. 被引量:5
  • 8Jianxi Liu.On the Harmonic Index of Triangle-Free Graphs[J].Applied Mathematics,2013,4(8):1204-1206. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部