期刊文献+

相依随机序列加权和滑动平均的若干小偏差定理 被引量:1

On Small Deviation Theorems of Moving Averages of Weighted Sums for Dependent Stochastic Sequence
下载PDF
导出
摘要 引入随机序列滑动似然比作为任意二值随机序列相对于Bernoulli分布的独立随机变量序列偏差的一种随机性度量,通过滑动相对熵给出了样本空间的一个子集.在此子集上得到了一类关于随机序列滑动平均的用不等式表示的强极限定理,即小偏差定理,推广了文献[5],[6]等关于随机序列算术平均的结果,这些结果蕴含近期诸多文献的主要结果. The notion of moving likelihood ratio, as a measure of the deviation of a sequence of two-valued random variables from an independent random sequence with Bernoulli distribution, is introduced. By restricting the moving likelihood ratio,a certain subset of the sample space is given,and on this subset, a class of strong taws, represented by inequalities,are obtained, which extend the results of Liu and Wang on arithmatic average. These conclusions include some results of the recent paper.
出处 《大学数学》 2014年第3期18-22,共5页 College Mathematics
基金 安徽工业大学青年基金项目(QZ201218) 合肥学院科研发展基金重点项目(13KY03ZD) 马鞍山师范高等专科学校自然科学研究项目(2013xjkyxm13)
关键词 加权和 滑动平均 Bernoulli分布 小偏差定理 weighted sum moving average Bernoulli distribution small deviation theorem
  • 相关文献

参考文献8

  • 1Lai T L. Summability methods for independent identically distributed random variblesEJ~. Proe. Amer. Math.Soc. , 1974, 45(2): 253--261.
  • 2Jain N C. Tail probabilities for sums of independent Banach space valued random variables[J]. Z. Wahrschein- lichkeitsheorie verw. Gebiete, 1975,33 : 155-- 166.
  • 3Gaposhkin V F. The law of large numbers for moving averages of independent random[J]. Mathematicheskie Zametki, 1987,42(1) : 124-- 131.
  • 4Li Xin Z. Complete convergence of moving average processes under dependent assumptions[J]. Stat. Probab. Letter. 1996, 30:165--170.
  • 5刘文.强偏差定理与分析方法[M].北京:科学出版社,2002.
  • 6汪忠志,杨卫国.关于相依离散随机序列的若干强偏差定理[J].系统科学与数学,2011,31(8):932-942. 被引量:7
  • 7汪忠志,唐健.离散随机序列加权和的若干极限定理[J].纯粹数学与应用数学,2008,24(3):417-423. 被引量:1
  • 8Ehud L, Rann S. Relative entropy in sequential decision problems[J]. Journal of Mathematical Economics, 2000,33 : 425--439.

二级参考文献16

  • 1汪忠志.关于任意离散随机序列的一个强偏差定理(英文)[J].纯粹数学与应用数学,2005,21(4):341-344. 被引量:2
  • 2Gaposhkin V F. The law of large numbers for moving averages of independent random. Mathe- maticheskie Zametki, 1987, 42(1): 124-131.
  • 3Shepp L A. A limit law concerning moving averages. Ann. Math. Stat., 1964, 35(1): 424-428.
  • 4Lai T L. Summability methods for independent identically distributed random varibles. Proc. Amer. Math. Soc., 1974, 45(2): 253-261.
  • 5Jain N C. Tail probabilities for sums of independent Banach space valued random variables. Z. Wahrscheinlichkeitsheorie Verw. Gebiete, 1975, 33: 155-166.
  • 6Mason D M. An extended version of the Erdos-Renyi strong law of large numbers. Ann. Probab., 1989, 17(1): 257-265.
  • 7Liu Wen. Relative entropy densities and a class of limit theorems or the sequence of m-valued random variables. Ann. Probab., 1990, 18(2): 829-839.
  • 8Klambanuer G. Mathematical Analysis. Marcel Dekker, Inc., New York, 1975.
  • 9Pfaffelhuber E. Generalized moving averages for ergodic transforms. Metrica, 1965, 22: 97-101.
  • 10Karlin S and Taylor H M. A first course in stochastic processes. Academic Press, New York, 1975.

共引文献7

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部