期刊文献+

基于LU-SGS迭代的DGM隐式方法研究 被引量:3

An Implicit Scheme of Discontinuous Galerkin Method( DGM)Based on LU-SGS Iterative Method
下载PDF
导出
摘要 考虑到LU-SGS迭代法已经在基于非结构网格的有限体积法中得到了成功应用,文章借鉴其思想,将其推广到高精度间断Galerkin有限元隐式格式求解中来,并对其性能进行了研究。为了避免隐式算法中对大型稀疏矩阵求逆,采用LU-SGS迭代法,只需要在每步时间推进中沿网格号从前到后和从后到前2次扫描计算即可,并且还能有效降低内存需求。通过对NACA0012翼型和ONERA M6机翼跨声速无粘流动进行数值模拟,计算结果表明:与TVD-RKDG显式时间格式相比,隐式格式所需的迭代步数和CPU时间均得到了很大程度上的减少,并且精度保持不变。 Because the LU-SGS iterative method has been successfully applied to the finite volume method based on unstructured grids, we extend it to the implicit scheme of the high-precision discontinuous Galerkin finite element method and study its properties. To avoid solving the inversion of large sparse matrix in the implicit scheme, we use the LU-SGS iterative method to conduct the forward scan and backward scan computation along the Grid Number at each step of time progression, thus effectively reducing memory requirements. To verify the effectiveness of implicit scheme of the DGM, we simulate the transonic inviscid flow around the NACA0012 airfoil and the ONERA M6 wing and compare the simulation results with the TVD-RKDG computation results. The simulation results, given in Figs. 2, 3 and 5, and their analysis show preliminarily that, compared with the TVD-RKDG computation method, the implicit scheme of the DGM greatly reduces the number of iterations, the CPU time and computational cost, thus increasing the speed of convergence around the flow field and computational efficiency.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第3期346-350,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(50976017) 国家"863"计划(2012AA01A304)资助
关键词 间断Galerkin有限元 LU—SGS 欧拉方程 非结构网格 时间隐式方法 airfoils, computational efficiency, computational fluid dynamics, cost reduction, Euler equations,flow fields, Galerkin methods, finite element method, finite volume method, iterative methods, meshgeneration, Runge-Kutta methods, transonic flow, wings discontinuous Galerkin method, implicitscheme, unstructured grid
  • 相关文献

参考文献7

  • 1Reed N H, Hill T R. Triangle Mesh Methods for the Neutron Transport Equation[ R]. Los Almos Scientific Laboratory, ReportLA-UR-73-479, 1973.
  • 2Fidkowski K J, Oliver T A, Lu J, Darmofal D L. P-Multigrid Solution of High-Order Discontinuous Galerkin Discretizations ofthe Compressible Navier-Stokes Equations [ J ]. J Comp Phys, 2005, 207 : 92-113.
  • 3Qiu J, Shu C W. Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method:One Dimensional Case [ J]. J Comp Phys, 2004, 193 : 115-135.
  • 4Zhang L P, Liu W, He L X, Deng X G. A New Class of DG/FV Hybrid Schemes for One-Dimensional Conservation Law[ C] //The 8th Asian Conference on Computational Fluid Dynamics, Hong Kong, 2010: 10-14.
  • 5郝海兵,杨永.非结构网格上p型多重网格法流场数值模拟[J].计算力学学报,2011,28(3):360-365. 被引量:5
  • 6Bassi F,Rebay S. GMRES for Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations//Cockbum B, Kar-niadakis G E, Shu C W, Discontinuous Galerkin Method : Theory, Computations and Applications[ M],Springer-Verlag, 2000.
  • 7Hartmann R,Houston P. Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations I: Method For-mulation [J]. Internatimal Journal of Numerical Analysis and Modeling, 2006(3) : 1-20.

二级参考文献12

  • 1蔚喜军,周铁.流体力学方程的间断有限元方法[J].计算物理,2005,22(2):108-116. 被引量:25
  • 2李劲杰,杨青,杨永年.三维非结构网格Euler方程的LU-SGS算法及其改进[J].计算物理,2006,23(6):748-752. 被引量:5
  • 3Reed N H, Hill TR. Triangle mesh methods for the Neutron transport equation[R]. Los Almos Scientific Laboratory, Report LA-UR-73-479,1973.
  • 4Cockhurn B, Chi-Wang Shu. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV.. The multidimen- sional case[J]. Math Comput, 1990,54 : 545.
  • 5Cockburn B, Chi-Wang Shu. Runge-kutta discontin- uous galerkin methods for convection-dominated problems [J]. Journal of Scientific Computing, 2001,16(3).
  • 6Qiu J, Shu C W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case[J]. J Comp Phys ,2004,193 : 115-135.
  • 7Bassi F, Ghidoni A, Rebay S, et al. High-order ac- curate p-multigrid discontinuous Galerkin solution of the Euler equations[J]. Int J Numer Meth Fluids, 2008.
  • 8Rasetarinera P, Hussaini M Y . An Efficient Implicit Discontinuous Spectral Galerkin Method [J]. J Comp Phys, 2001,172 : 718-738.
  • 9Hong Luo, Joseph D. Baum, Rainald Lohner. A p- multigrid discontinuous Galerkin method for the Eul- er equations on unstructured grids[J]. J Comp Phys, 2006,211: 767-783.
  • 10Krivodonova L, et al. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, geometries[J]. Applied Numeri- cal Mathematics ,2004,48 : 323-338.

共引文献4

同被引文献9

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部