期刊文献+

一种简单快速检测汞离子的1,4-二硫苏糖醇膜修饰金平板电极 被引量:9

Simple and Rapid Determination of Mercury Ions Based on 1,4-Dithiothreitol Assembled Gold Plate Electrode
下载PDF
导出
摘要 将1,4-二硫苏糖醇(DTT)自组装在100nm厚的平整金膜表面,形成DTT膜修饰金平板电极(GPE),构建了一种新颖的简单、快速测定汞离子的选择性电极分析方法.通过电化学交流阻抗和循环伏安法探讨了该电极的响应原理,即固定在Au表面的DTT通过另一端的巯基与汞离子发生强配位作用而吸附结合带正电荷的汞离子,引起电极表面膜电位的变化,从而选择性地识别汞离子.实验结果表明,该电极在pH=6.0的Tris-HCl缓冲溶液中对汞离子有良好的电位响应性能,其线性范围为1.0×10^-8~1.0×10^-3mol/L,能斯特响应斜率为(29.62±0.2)mv/-pc(25qC),检出限为5.1×10^-9mol/L.该汞离子检测电极的响应时间仅为20s,且有较好的重现性和稳定性.通过测定各种离子的选择性系数,发现Cu2+,Fe2+,Na+,K+,Mg2+,Ba2+,Ca2+,Zn2+,Sn2+,Pb2+,Ag+,Al3+,Fe3+,Ni2+,N02-,IO3-,BrO3-和ClO3等离子不干扰该电极对汞离子的检测.此外,将该电极用于实际水样中微量汞离子含量的测定,结果与双硫腙分光光度方法一致,且回收率为98.20%~101.75%. A simply gold plate electrode(GPE) based on 1,4-dithiothreitol( DTT), which was self-assembled on a surface of flat gold film with a thickness of 100 nm, was developed to construct a novel selective electrode method for rapid detection of mercury ion. Through electrochemical impedance analysis and cyclic voltammetile method, the response mechanism of the electrode for selective recognition of Hg2+ was investigated, that the other terminal sulfhydryl group of DTT binding to Au surface can coordinate with Hg2+ due to their strong complexing interaction, resulting in change of membrane potential of the electrode surface. The proposed electrode possesses good potential performance responding to Hg2+ with a linear range of 1.0×10^-8--1.0 ×10^-3 mol/L, a Nernst slope of (29.62±0. 2) mV/-pc(25℃ ), and a detection limit of 5. 1×10^-9 mol/L in Tris- HCl buffer solution (pH = 6. 0). The electrode has short response time (20 s), good reproducibility and stabili- ty. No interference can be observed from most common ions like Cu2+,Fe2+,Na+,K+,Mg2+,Ba2+,Ca2+,Zn2+,Sn2+,Pb2+,Ag+,Al3+,Fe3+,Ni2+,N02-,IO3-,BrO3- and ClO3. Compared with spectrophotometric method with dithizone, the proposed electrode can be well utilized to the determination of trace amount of Hg2+ in real water samples with a recovery rate of 98.20%--101.75%, showing promising application in environmental and other fields.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第7期1388-1395,共8页 Chemical Journal of Chinese Universities
基金 国家科技支撑计划项目(批准号:2012BAD31B08,2012BAC17B01) 国家自然科学基金(批准号:21275022,21105005,21075011)资助~~
关键词 金平板电极 1 4-二硫苏糖醇 自组装膜 汞离子 选择性识别 Gold plate electrode 1,4-Dithiothreitol Self-assembled monolayer Mercury ion Selectiverecognition
  • 相关文献

参考文献41

  • 1Kobal A. B., Horvat M., Prezelj. M., Briski A. S., Krsnik M., Dizdarevi T., Mazej D., Falnoga I., Stibilj V., Arneri N., Kobal D., Osredkar J., J. Trace Elem. Med. Biol., 2004, 17, 261—274.
  • 2Hoyle I., Handy R. D., Aquatic Toxicol., 2005, 72, 147—159.
  • 3Percy A. J., Korbas M., George G. N., Gailer J., J. Chromatogr. A, 2007, 1156, 331—339.
  • 4Bi N., Chen Y. H., Qi H. B., Zheng X., Chen Y., Liao X., Zhang H. Q., Tian Y., Sens. Actuators B, 2012, 166/167, 766—771.
  • 5徐进勇,王彤,陈杜军,叶隆慧,倪师军.光诱导蒸气发生-高效液相色谱-电感耦合等离子体质谱联用测定汞形态[J].分析化学,2012,40(1):169-172. 被引量:15
  • 6Fong B. M. W. F., Siu T. S., Lee J. S. K., Tam S., J. Anal. Toxicol., 2007, 31, 281—287.
  • 7Li Y. F, Chen C. Y, Li B., Sun J., Wang J. X., Gao Y.X., ZhaoY. L., Chai Z. F., J. Anal. Atomic Spectrom., 2006, 21(1), 94—96.
  • 8Yang Q. J., Tan Q., Zhou K. Z., Xu K. L., Hou X. D., J. Anal. Atomic Spectrom., 2005, 20, 760—762.
  • 9Hsu I. H., Hsu T. C., Sun Y. C., Biosens. Bioelectron., 2011, 26, 4605—4609.
  • 10Bansal N., Vaughan J., Boullemant A., Leong T., Microchem. J., 2014, 113, 36—41.

二级参考文献16

共引文献39

同被引文献85

  • 1肖素芳,王宗花,罗国安,王义明.L-半胱氨酸在环糊精复合碳纳米管电极上的伏安测定[J].高等学校化学学报,2004,25(10):1833-1835. 被引量:8
  • 2黄志勇,黄智陶,张强,庄峙厦.原子荧光光谱法测定环境水及土壤样品中的汞形态含量[J].光谱学与光谱分析,2007,27(11):2361-2366. 被引量:27
  • 3Nriagu J O. A global assessment of natural sources of atmospheric trace metals[J]. Nature, 1989, 338(6 210): 47-49.
  • 4Yang Y, Gou X, Blecha J, et al. A highly selective pyrene based fluorescent sensor toward Hg2+ detection[J]. Tetrahedron Letters, 2010, 51(26): $ 422-3 425.
  • 5Hatch W R, Ott W L. Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry[J]. Analytical Chemistry, 1968, 40(14): 2 085-2 087.
  • 6Du J, Wang Z, Fan J, et al. Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry[J]. Sensors and Actuators B: Chemical, 2015, 212: 481-486.
  • 7Yan F, Zou Y, Wang M, et al. Highly photo]umineseent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells [J]. Sensors and Actuators B: Chemical, 2014, 192: 488-495.
  • 8Wang M, Liu S, Zhang Y, et al. Graphene nanostructures with plasma polymerized allylamine biosensor for selective detection of mercury ions [J]. Sensors and Actuators B: Chemical, 2014, 203: 497-503.
  • 9Gao X, Lu Y, Zhang R, et al. One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag based on the Ag - induced enhancement of fluorescence [J]. Journal of Materials Chemistry C, 2015, 3:2 302, 2 309.
  • 10Smith K T, Balouet J C, Shortle W C, et al. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)[J]. Chemosphere, 2014, 95: 58-62.

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部