期刊文献+

基于航模辅助观测的车辆轨迹提取方法 被引量:3

Vehicle trajectory extraction based on traffic videotaping from model aircraft
下载PDF
导出
摘要 为了克服交通流定点视频观测方法在观测范围上的局限性,提出了一种基于飞行航模辅助视频观测的地面道路车辆轨迹提取方法.首先应用飞行航模在空中拍摄获得道路交通流视频,并将视频分解为连续逐帧图片;其次应用针孔成像模型和空间坐标转换算法,对逐帧航拍图片内的车辆坐标进行提取和转换,以获得车辆的运行时空轨迹数据;最后进行了该方法的3类误差分析.结果表明,该方法在标准棋盘格试验下提取坐标的相对误差小于5%,实际道路交通目标坐标提取的精度达到90%以上.航模辅助视频观测法可实现对交通目标的大范围低成本观测,能够满足交通工程的观测需求. To overcome the scope limitation of video observation from fixed platforms, a new method of detecting vehicular trajectory from the traffic flow video provided by model aircraft is proposed. First, model aircraft shoots the traffic flow in the air to get the video which is consequently extracted into continuous frames. Second, by using the pinhole camera model and the algorithm of space coordinate transformation, the coordinates of vehicles from the continuous frames are obtained to form the spatial temporal trajectory of vehicles. Finally, three kinds of bias of the proposed method are analyzed. The results show that the relative bias in the standard checkerboard testing is less than 5%, and the accuracy of the data collected by the system under the real road is greater than 90%. The proposed approach provides a large scope and low-cost way for traffic observation, which can meet the demand of survey in transportation engineering.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第6期105-110,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(51008074)
关键词 交通观测 车辆轨迹 模型飞机 图像处理 误差分析 traffic observation vehicular trajectory model aircraft image processing bias analysis
  • 相关文献

参考文献10

二级参考文献25

  • 1苏显渝,李继陶.三维面形测量技术的新进展[J].物理,1996,25(10):614-620. 被引量:29
  • 2杨俊,王润生.智能化交通视频图像处理技术研究[J].电视技术,2006,30(9):74-77. 被引量:14
  • 3R·J·索尔特 张佐周等(译).-[J].道路交通分析与设计,1982,.
  • 4冯桂炎.实用交通工程学[M].长沙:湖南大学出版社,1986..
  • 5锻治晃三 赵恩棠等(译).航测在道路、交通工程上的应用[M].北京:人民交通出版社,1983..
  • 6Giannotti F D,P Mobility. Data mining and privacy: a vision of eonvergenee[C]//Data Mining and Privacy,2008: 1-11.
  • 7Schroedl S, Wagstaff K, Rogers S, et al. Mining GPS traces for map refinement[J]. Data mining and knowledge Discovery, 2004(9): 59-87.
  • 8Li X, Han J, Lee L, et al. Traffic density-based discovery of hot routes in road networks[C]//Advances in Spatial and Temporal Databases 2007: 441-459.
  • 9Chang J W, Bista R, Kim Y C, et al. Spatio-temporal similarity measure algorithm for moving objects on spatial networks[C]//International Conference of Computational Science and its Applicaitons. 2007. Kuala Lumpur, Malaysia: Springer.
  • 10Hwang J R, Kang H Y, Li K J. Searching for similar trajectories on road networks using spatio-temporal similarity[C]//Perspectives in Conceptual Modeling, 2006.

共引文献51

同被引文献18

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部