期刊文献+

反演极限与Lauwerier吸引子(Ⅱ)

Inverse Limit and Lauwerier Attractor (Ⅱ)
下载PDF
导出
摘要 对适当的参数,二次映射有一条吸引的周期轨道,并且其吸引集在单位闭区间上是稠密的.根据此性质,文中定义了Lauwerier映射的一个上半连续分解.在此分解上存在一个可分商空间,通过投影将二维的Lauwerier映射降为一维的二次映射,运用二次映射反演极限空间上的移位映射来研究Lauwerier映射的动力学性质.首先对二次映射进行几乎Markov分割,然后将每个分割区间扩张成相应的小矩形区域,再对Lauwerier映射进行几乎Markov分割后,从而证明了当参数小于4时,Lauwerier映射与二次映射反演极限空间上的移位映射是拓扑半共轭的. The quadratic mapping had an attracting periodic orbit of which the attraction set was dense in a unit closed interval for an appropriate parameter.According to that property,an upper semi-continuous decomposition of the Lauwerier mapping was defined,with respect to which there existed a separable quotient space.The 2D Lauwerier mapping was reduced to a 1D quadratic mapping through projection.The dynamic properties of the Lauwerier mapping was studied with the shift map on the inverse limit space of the quadratic mapping.First,the quadratic mapping was nearly Markov partitioned,then each partition interval was expanded to a corresponding small rectangular region,in turn the Lauwerier mapping was nearly Markov partitioned again.It is proved that the Lauwerier mapping is topologically semi-conjugate to the shift map on the inverse limit space of the quadratic mapping when the parameter is under 4.
作者 郭峰 李登辉
出处 《应用数学和力学》 CSCD 北大核心 2014年第7期798-804,共7页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11172246 11272268)~~
关键词 Lauwerier映射 反演极限空间 上半连续分解 Markov分割 拓扑半共轭 Lauwerier mapping inverse limit space upper semi-continuous decomposition Markov partition topologically semi-conjugate
  • 相关文献

参考文献18

  • 1Ruelle D,Takens F.On the nature of turbulence[J].Commun Math Phys,1971,20(3):167-192.
  • 2乐源,谢建华.一类双面碰撞振子的对称性尖点分岔与混沌[J].应用数学和力学,2007,28(8):991-998. 被引量:6
  • 3Leine R I,Nijmeijer H.Dynamics and Bifurcations of Non-Smooth Mechanical Systems[M].Springer,2004.
  • 4LI Shi-hai.Dynamical properties of the shift maps on the inverse limit space[J].Ergodic Theory and Dynamical Systems,1992,12(1):95-108.
  • 5Barge M,Martin J.Chaos,periodicity,and snake-like continua[J].Trans Amer Math Soc,1985,289(1):355-365.
  • 6Williams R F.One-dimensional non-wandering sets[J].Topologically,1967,6(4):473-487.
  • 7Williams R F.Expanding attractors[J].Publications Mathématiques de l'Institut des Hautes tudes Scientifiques,1974,43(1):169-203.
  • 8Williams R F.The structure of attractors[C]//Actes du Congrès International des Mathematics,1970,2:947-951.
  • 9Williams R F.The structure of Lorenz attractors[J].Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques Turbulence Seminar,1979,50(1):73-99.
  • 10Guckenheimer J,Williams R F.Structure stability of Lorenz attractors[J].Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques Turbulence Seminar,1979,50(1):59-72.

二级参考文献29

  • 1乐源,谢建华.一类双面碰撞振子的对称性尖点分岔与混沌[J].应用数学和力学,2007,28(8):991-998. 被引量:6
  • 2Luo A C J.On the symmetry of solutions in non-smooth dynamical systems with two constraints[J].Journal of Sound and Vibration,2004,273:1118-1126.
  • 3Han R P S,Luo A C J,Deng W.Chaotic motion of a horizontal impact pair[J].Journal of Sound and Vibration,1995,181(2):231-250.
  • 4de Souza S L T,Caldas I L.Controlling chaotic orbits in mechanical systems with impacts[J].Chaos,Solitons & Fractals,2004,19:171-178.
  • 5Luo A C J.Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator[J].Chaos,Solitons & Fractals,2004,19:823-839.
  • 6Luo G W.Period-doubling bifurcations and routes to chaos of the vibratory systems contacting stops[J].Physics Letters A,2004,323:210-217.
  • 7Han W,Jin D P,Hu H Y.Dynamics of an oblique-impact vibrating system oftwo degrees of freedom[J].Journal of Sound and Vibration,2004,275:795-822.
  • 8Luo A C J,CHEN Li-di.Periodic motions and grazing in a harmonically forced,piecewise,linear oscillator with impacts[J].Chaos,Solitons & Fractals,2005,24:567-578.
  • 9Ding W C,Xie J H,Sun Q G.Interaction of Hopf and period doubling bifurcations of a vibro-impact system[J].Journal of Sound and Vibration,2004,275(5):27-45.
  • 10Wen G L.Codimension-2 Hopf bifurcation of a two-degree-of-freedom vibro-impact system[J].Journal of Sound and Vibration,2001,242(3):475-485.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部