期刊文献+

稀疏特征自适应的彩色图像隐写 被引量:4

Sparse Feature Adaptive Steganography in Color Image
下载PDF
导出
摘要 为了提高稀疏域隐写的性能,提出一种基于图像成分的稀疏域隐写算法.首先构造2个字典,分别用于稀疏表示图像的分片平滑成分(卡通成分)和纹理成分,并给出了2种构造字典的方法,一种是利用现有数学模型,另一种是利用K-SVD算法进行自适应学习;然后结合2个字典对彩色图像的R,G,B通道进行稀疏分解,分别获得2种图像成分的稀疏表示系数;最后将秘密信息嵌入到其中2个通道的非零表示系数中,并优先选择纹理成分稀疏表示系数,另一通道则用于保存分解路径.实验结果证明,该算法在获得较高视觉质量的同时,比其他稀疏域隐写算法具有更强的抗隐写分析能力和更好的鲁棒性. In order to improve the performance of steganography in sparse domain, a steganography based on image components is proposed. First, two dictionaries are built, one for piecewise smooth parts (cartoon like) and the other for textures. Two methods of constructing dictionaries, using mathematical models and learned by K-SVD algorithm, are given. Then, the two dictionaries are combined to decompose the R, G and B channels, and sparse coefficients of the two kinds of image contents are obtained, respectively. Finally, secret information is embedded into nonzero coefficients of two channels, another channel is used to store decomposition path. During the embedding process, coefficients of textures are used to embed secret data in prior to those of piecewise smooth parts. Experimental results show that the proposed method can achieve high visual quality and outperform other existing sparse domain methods in anti-detection performance and robustness.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第7期1109-1115,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61170207)
关键词 卡通成分稀疏字典 纹理成分稀疏字典 稀疏表示 隐写术 cartoon-sparse-dictionary texture-sparse-dictionary sparse representation steganography
  • 相关文献

参考文献16

  • 1奚玲,平西建,张涛.整数小波域湿纸码自适应信息隐藏算法[J].计算机辅助设计与图形学学报,2011,23(7):1217-1223. 被引量:3
  • 2Chen X C,Wang Y H,Tan T N,et al.Blind image steganalysis based on statistical analysis of empirical matrix [C]//Proceedings of the 18th International Conference on Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2006:1107-1110.
  • 3Pevny T,Bas P,FridrichJ.Steganalysis by subtractive pixel adjacency matrix [J].IEEE Transactions on Information Forensks and Security,2010,5(2):215-224.
  • 4Goljan M,Fridrich J,Holotyak T.New blind steganalysis and its implications[C]//Proceedings of SPIE.Bellingham:Society of Photo-Optical Instrumentation Engineers Press,2006,6072:1-13.
  • 5Jost P,Vandergheynst P,Frossard P.Redundant image representations in security applications [C]//Proceedings of International Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,2004,4:2151-2154.
  • 6Cancelli G,Barni M.MPSteg-Color:data hiding through redundant basis decomposition [J].IEEE Transactions onInformation Forensics and Security,2009,4(3):346-358.
  • 7Starck J L,Elad M,Donoho D L.Image decomposition:separation of texture from piecewise smooth content [C]//Proceedings of SPIE.Bellingham:Society of Photo Optical Instrumentation Engineers Press,2003,5207:571-582.
  • 8Fadili M J,Starck J L,Bobin J,el al.Image decomposilion and separation using sparse representations:an overview [J].Proceedings of the IEEE,2010,98(6):983-994.
  • 9Ribhu R,Ghosh D.A sparse representation based approach for steganography[C]//Proceedings of the 11th International Conference on Signal Processing.Los Alamitos:IEEE Computer Society Press,2012:1678-1681.
  • 10Ahani S,Ghaemmaghami S.Image steganography based on sparse decomposition in wavelet space [C]//Proceedings oI IEEE International Conference on Information Theory and Information Security.Los Alamitos:IEEE Computer Society Press,2010:632-637.

二级参考文献19

  • 1Harmsen J J, Pearlman W A. Steganalysis of additive noise modelable information hiding [C] //Proceedings of SPIE. Bellingham: Society of Photo Optical Instrumentation Engineers Press, 2003, 5020:131-142.
  • 2Ker A D. Steganalysis of LSB matching in grayscale images [J]. IEEE Signal Processing Letters, 2005, 12(6): 441-444.
  • 3Goljan M, Fridrich J, Holotyak T. New blind steganalysis and its implications [C]//Proceedings of SPIE. Bellingham: Society of Photo Optical Instrumentation Engineers Press, 2006, 6072:1-13.
  • 4Farid H. Detecting hidden messages using higher-order statistical models [C]//Proceedings of International Conference on Image Processing. Los Alamitos: IEEE Computer Society Press, 2002, 2:905-908.
  • 5Wu D C, Tsai W H. A steganographic method for images by pixel value differencing [J]. Pattern Recognition Letters, 2003, 24(9/10): 1613-1626.
  • 6Yang C H, Weng C Y. Wang S J. Adaptive data hiding in edge areas of images with spatial LSB domain systems [J]. IEEE Transactions on Information Forensics and Security, 2008, 3(3): 488-497.
  • 7Hempstalk K. Hiding behind corners: using edges in images for better steganography [OL]. http://diit, sourceforge, net/ files/HidingBehindCorners, pdf.
  • 8Park Y R, Kang H H, Shin S U, et al. An image steganography using pixel characteristics [C] //Proceedings of Computational Intelligence and Security: International Conference (CIS 2005 Part 2). Heidelberg: Springer, 2005, 3802: 581-588.
  • 9Lin C C, Hsueh N L. A lossless data hiding scheme based on three-pixel block differences [J]. Pattern Recognition, 2008, 41(4): 1415-1425.
  • 10Wang C M, Wu N I, Tsai C S steganographic method with pixe modulus function [J]. Journal of 2008, 81(1): 150-158.

共引文献2

同被引文献25

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部