期刊文献+

非约束环境下人脸特征点的稳定跟踪 被引量:5

Stable Face Features Tracking under Unconstrained Condition
下载PDF
导出
摘要 为了对人脸特征点进行精确地跟踪,提出一种在线参考表观模型(ORAM)的算法.首先在原主动表观模型(AAM)中加入在线更新的参考模型;然后采用子空间在线自更新机制,利用增量学习方法在线更新AAM的纹理模型和参考模型;在此基础上,基于同步反向合成建立ORAM的特征点拟合算法.为减少跟踪过程产生的累积误差,利用初始稳定跟踪结果建立纹理子空间重置机制,完成人脸特征点跟踪.实验结果表明,ORAM算法无需训练集,在姿态、表情、光照变化的环境下,能够准确、快速地完成人脸跟踪. A method for tracking facial feature points stably is proposed to complete the facial feature points tracking accurately. First, the online update reference texture model is combined with the original active appearance model (AAM). Second, use the subspace update mechanism. The AAM texture model and the reference model are updated via the incremental learning method. Then the online reference appearance model (ORAM) fitting algorithm based on simultaneously inverse compositional is designed. To reduce the cumulative error, texture subspace reset mechanism is introduced based on the first stably tracked frames. Finally, face features tracking is completed. Compared with other AAM algorithms that require a large amount of training data, ORAM need no training data. It is proved that this method can complete the face tracking accurately and quickly in different posture, facial expression and illumination conditions.
作者 郭修宵 陈莹
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第7期1135-1142,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61104213) 江苏省自然科学基金(BK2011146)
关键词 人脸特征点跟踪 在线参考表观模型 模型拟合 纹理模型 子空间重置 facial feature points tracking online reference appearance model (ORAM) model fitting texture model subspace reset
  • 相关文献

参考文献18

  • 1Matthews I,Baker S.Active appearance models revisited [J].International Journal of Computer Vision.2004,60(2):135-164.
  • 2Edwards G J,Comes T F,Taylor C J.Face recognition using active appearance models [M]//Lecture Notes in Computer Science.Heidelberg:Springer,1998,1407:581-595.
  • 3Lan Y X,Theobald B J,Harvey R,etal.Improving visual features for lip-reading [OL].[2013-06-20].http://www2.cmp.uea.ac.uk/hit/research/lipreading/pu bs _ asset s/t heobald _ avsp2010c.pdf.
  • 4Cui Y,Jin Z.Facial feature points tracking based on AAM with optical flow constrained initialization [J].Journal of Pattern Recognition Research,2012,7(1):72-79.
  • 5Huang C,Ding X Q,Fang C.Pose robust face tracking by combining view-based AAMs and temporal filters [J].Computer Vision and Image Understanding,2012,116(7):777-792.
  • 6陈莹,艾春璐.条件主动外观模型下的人脸特征点跟踪[J].计算机辅助设计与图形学学报,2013,25(4):510-518. 被引量:10
  • 7Cootes T F,Taylor C J,Cooper D H,et al.Active shape models-their training and application[J].Computer Vision and Image Understanding,1995,61(1):38-59.
  • 8Lucas B D,Kanade T.An iterative image registration technique with an application to stereo vision [C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann,1981,2:674-679.
  • 9Baker S,Matthews 1.Lucas Kanade 20 years on:a unifying framework [J].International Journal of Computer Vision,2004,56(3):221-255.
  • 10Ionita M C,Tresadern P A,Cootes T F.Real time feature point tracking with automatic model selection [C]//Proceedings of IEEE International Conference on Computer Vision Workshops.Los Alamitos:IEEE Computer Society Press,2011:453-460.

二级参考文献18

  • 1Edwards G J, Taylor G J, Cootes T F. Interpreting face images using active appearance models [C] //Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition. Los Alamitos: IEEE Computer Society Press, 1998:300-305.
  • 2Matthews I, Baker S. Active appearance models revisited [J]. International Journal of Computer Vision, 2004, 60 (2) 135-164.
  • 3Lucey S, Wang Y, Cox M, et al. Efficient constrained local model fitting for non-rigid face alignment [J]. Image and Vision Computing, 2009, 27 (12) : 1804-1813.
  • 4van der Maaten L, Hendriks E A. Capturing appearance variation in active appearance models [C]//Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2010:34-41.
  • 5Zhou M, Liang L, Sun J, et al. AAM based face tracking with temporal matehing and face segmentation [C] // Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2010:701-708.
  • 6Cootes T F, Taylor C J, Cooper D H, et al. Active shape models-their training and application [J]. Computer Vision and Image Understanding, 1995, 61(1): 38-59.
  • 7Cootes T F, Edwards G J, Taylor C J. Active appearance models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685.
  • 8Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework [J]. International Journal of Computer Vision, 2004, 56(3): 221-255.
  • 9Tanveer M, Iqbal N. A Bayesian approach to face hallucination using DLPP and KRR [C] // Proceedings of the 20th International Conference on Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2010: 2154-2157.
  • 10Lowe D G. Object recognition from local scale-invariant features [C]// Proceedings of the 7th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 1999, 2:1150-1157.

共引文献22

同被引文献17

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部