摘要
为了得到片上电源线/地线网络(P/G网)快速而准确的求解算法,根据结构化供电网的局部性效应,重新分析了连续过松弛迭代法(SOR)和变向隐含迭代法(ADI)在P/G网中的求解效率及并行性,提出了利于GPU加速的并行算法:G_RBSOR和G_ADI.它们均采用规则的数据结构,以利于GPU并行读写数据,并采用合并归约来并行计算迭代结束标志位.为了避免GPU计算的数据冲突,G_RBSOR算法采用棋盘格方式对电路节点进行红黑分类,并对红黑节点进行交错松弛.实验结果表明,在不损失精度的前提下,与各自对应的CPU串行算法相比,G_RBSOR和G_ADI算法均取得了超过50倍的加速效果;与高效的P/G分析串行求解算法ICCG相比,也取得了超过5倍的加速效果.
In order to study fast and accurate algorithms for power/ground network (P/G network) analyses, based on the locality effect of structure P/G networks, this work rethinks the efficiency and parallelism of successive over relaxation (SOR) algorithm and alternating direction implicit (ADI) algorithm. And then it proposes the optimized GPU-friendly parallel algorithms: G_RBSOR and G_ ADI. The algorithms both use the regular data structure to facilitate GPU parallel data reading/ writing. And they both use the merging reduction technique for GPU parallel computing to fast calculate the iteration-ending flags, too. Furthermore, in order to avoid the data collision in GPU parallel calculating, G_RBSOR uses the checkerboard strategy to classify all P/G network nodes into red and black groups and then, relax red nodes and black nodes step-by-step. Experimental results show that without any precision penalty, G_RBSOR and G_ADI algorithms can achieve more than 50X speedup over their serial CPU counterparts. In comparison with the efficient serial algorithm ICCG, both can also achieve more than 5X speedup.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2014年第7期1203-1210,共8页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61274033
61271198
61301146)
国家"八六三"高技术研究发展计划(2009AA01Z126)