期刊文献+

中心主子阵约束下矩阵方程AX=B的双对称解 被引量:1

Solutions to AX=B for Bisymmetric Matrices under a Central Principal Submatrix Constraint
下载PDF
导出
摘要 中心主子阵是指划去周边相同的行和列所得的主子阵。从中心主子阵扩充到双对称矩阵是有效和自然的一种矩阵扩充。通过分析双对称矩阵以及中心主子阵的结构,不仅给出了方程AX=B在中心主子阵约束下有双对称解的充分必要条件,而且给出了通解的表达式。在此基础上,也给出了最佳逼近问题的解的表达式。 A central principal submatfix is a submatrix obtained by deleting the same number of rows and columns in edges of a matrix. This is a feasible and reasoned way to expand the submatrix to bisymmetric matrices. By means of the special structure of bisymmetric matrices and its central principal submatrix, this paper obtains not only necessary and sufficient conditions for the solvability of AX=B in bisymmetric matrices set under a central principal submatrix, but also the general representation of the solutions. Based on this, the expression of the solution for the corresponding optimal approximation problem is given.
作者 赵丽君
出处 《台州学院学报》 2014年第3期8-11,29,共5页 Journal of Taizhou University
基金 国家自然科学基金委员会资助(11301107)
关键词 双对称矩阵 中心主子阵 线性约束 bisymmetric matrix central principal submatrix linear constraint
  • 相关文献

参考文献5

  • 1Lijun Zhao, Xiyan Hu, Lei Zhang. Inverse eigenvalue problems for bisymmetric matrices under a central principal submatrix constraint[Jl. Linear & Multilinear Algebra, 2011, 59(2): 117-128.
  • 2Zhenyun Peng, Xiyan Hu, Lei Zhang. The inverse problem of bisymmetric matrices with a submatrix constraint[J]. Numerical Linear Algebra Applications, 2004, 11: 59-73.
  • 3孙继广.实对称矩阵两类逆特征值问题.计算数学,1988,3:282-290.
  • 4Qingxinag Yin. Construction of real antisymmetric and bi-antisymmetric matrices with prescribed spectrum data[J]. Linear Algebra Applications, 2004, 389: 95-106.
  • 5Hua Dal, Lancaster Peter. Linear matrix equations from an inverse problem of vibration theory[J] Linear Algebra Applications, 1996, 246: 31-47.

共引文献1

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部