摘要
对不定二次规划,本文提出了一种线性化技术,将其近似地转化为一个线性规划问题;然后,结合后者的线性约束条件,提出了一个缩减子超矩形算法,该算法的主要思想是对于违犯线性约束条件的变量,从箱约束条件中先行删除,再利用分枝算法求最优值点。本文证明了算法的全局收敛性。数值算例表明,对于大规模的二次规划问题,仍能快速求出结果。
A linear transformation method is presented to solve indefinite quadratic programming in this paper. First, the method is to translate indefinite quadratic programming into a relaxed linear programming. Then, according o the linear constraints the reduced sub-super-rectangle algorithm is proposed. The variable which unsatisfied linear constraints is deleted from box constraints by using the algorithm. After that, the results of optimM point are calculated by using the branching algorithm. The global convergence of the algorithm is proved in this paper. In order to verify the validity of the algorithm, a large scale indefinite quadratic programming is increased. The new algorithm is still applicable. The numerical example shows that the algorithm can quickly calculate the results.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第4期12-15,共4页
Journal of Chongqing Normal University:Natural Science
关键词
不定二次规划
线性化技术
子超矩形
全局优化
indefinite quadratic programming
linear technology
sub-super-rectangle
global optimization