期刊文献+

一种加权的系统聚类方法及应用 被引量:3

A Weighted System Clustering Method and Its Application
下载PDF
导出
摘要 提出了加权的系统聚类方法.该方法通过对不同的客户特征赋予不同的权重,达到对客户的聚类结果更符合企业经营目标的目的.为分析客户特征的权重,利用线性回归挖掘企业的历史数据,得到物流企业对客户各个特征的重视程度,并把重视程度作为权重进行客户聚类.实验分析表明,与传统的系统聚类相比,加权的系统聚类方法可以发现隐藏在一般客户中的重要客户,从而使物流企业对本公司的重要客户提供优质服务. A weighted system clustering method is proposed, which could achieve clustering result for customers more in accordance with the target of an enterprise by given different weights for different customers. For analysis the weights of customer's characteristics, linear regression is used in historical data mining of the enterprise to get emphasis of logistics enterprises on the customer's individual characteristics, and the emphasis as weights for customer clustering. Experimental results show that compared with the traditional system clustering, the weighted system clustering method can find valued customers hidden in general customers, so that the logistics business could provide high quality services to the company's key customers.
出处 《沈阳大学学报(自然科学版)》 CAS 2014年第3期201-207,共7页 Journal of Shenyang University:Natural Science
基金 辽宁省教育厅基金资助项目(LT2013024)
关键词 客户关系管理 数据挖掘 物流 加权的系统聚类 线性回归 customer relationship management data mining logistics weighted system clustering linear regression
  • 相关文献

参考文献4

二级参考文献30

共引文献63

同被引文献27

  • 1Chen X J,Xu X F,HuangJZ,etal.TW-K-Means: Automated Two-Level Variable Weighting Clustering Algorithmfor Multiview Data[J].IEEE Transactions on KnowledgeandDataEngineering,2013,25(4):932- 944. [2] 张嘉赢,刘井莲,赵卫绩.一种基于半布尔矩阵的混合维关联规则算法[J].沈阳大学学报,2008,20(2):19- 21. [3] 原忠虎,李佳,张博.一种加权的系统聚类方法及应用[J]. 沈阳大学学报:自然科学版,2014,26(3):201- 207. [4] PengXS,ZhouCK,HepburnDM.etal.ApplicationofKMeansMethodtoPatternRecognitioninOn- LineCablePartial DischargeMonitoring[J].IEEE TransactionsonDielectrics andElectricalInsulation,2013,20(3):754 -761. [5] ShiY,TrancheventLC,LiuX H,etal.OptimizedData FusionforKernelK-MeansClustering[M]∥Kernel-Based DataFusionforMachineLearning.London:SpringerBerlin Heidelberg,2011:89- 107. [6] 丁静,杨善林,罗贺,等.云计算环境下的数据挖掘服务模式 [J].计算机科学.2012,39(6A):217- 237. [7] Boutsidis C, Magdon-Ismail M. Deterministic Feature SelectionforK-MeansClustering[J].IEEETransactionson InformationTheory,2013,59(9):6099 -6110. [8] XuTT,DongXJ.MiningFrequentPatternswithMultiple Minimum Supports UsingBasic Apriori[C]∥2013 Ninth InternationalConferenceon NaturalComputation (ICNC), Shenyang,2013:957- 961. [9] Peng Y,Zhou T.Researchonthe AprioriAlgorithmin ExtractingtheKeyFactor[C]∥2012IEEE2ndInternational Conferenceon Cloud Computing and Intelligent Systems (CCIS).Hangzhou,2012:90- 93. [10] PaladinoR,camposJM,PereiraW.StudyoftheGraduates fromComputerScienceDepartmentoftheCatholicUniversity AndresBellinCaracas[C]∥ComputingConference(CLEI), 2014XLLatinAmerican2014,Montevideo:1- 8.
  • 2PengXS,ZhouCK,HepburnDM.etal.ApplicationofKMeansMethodtoPatternRecognitioninOn- LineCablePartial DischargeMonitoring[J].IEEE TransactionsonDielectrics andElectricalInsulation,2013,20(3):754 -761.
  • 3ShiY,TrancheventLC,LiuX H,etal.OptimizedData FusionforKernelK-MeansClustering[M]∥Kernel-Based DataFusionforMachineLearning.London:SpringerBerlin Heidelberg,2011:89- 107.
  • 4Boutsidis C, Magdon-Ismail M. Deterministic Feature SelectionforK-MeansClustering[J].IEEETransactionson InformationTheory,2013,59(9):6099 -6110.
  • 5XuTT,DongXJ.MiningFrequentPatternswithMultiple Minimum Supports UsingBasic Apriori[C]∥2013 Ninth InternationalConferenceon NaturalComputation (ICNC), Shenyang,2013:957- 961.
  • 6Peng Y,Zhou T.Researchonthe AprioriAlgorithmin ExtractingtheKeyFactor[C]∥2012IEEE2ndInternational Conferenceon Cloud Computing and Intelligent Systems (CCIS).Hangzhou,2012:90- 93.
  • 7PaladinoR,camposJM,PereiraW.StudyoftheGraduates fromComputerScienceDepartmentoftheCatholicUniversity AndresBellinCaracas[C]∥ComputingConference(CLEI), 2014XLLatinAmerican2014,Montevideo:1- 8.
  • 8Han J, Dong G, Yin Y. Efficient Mining of Partial Periodic Patterns in Time Series Database [ C~ ff Proceedings of 15th International Conference on Data Engineering, Sydney, NSW, 1999. Washington, I)(2.. IEEE Computer Society, 1999:106 - 115.
  • 9Han J, Pei J, Yin Y. Mining Frequent Patterns without Candidate Generation[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000. New York: ACM, 2000:1- 12.
  • 10Xin D, Han J, Yan X, et al. Mining Compressed Frequent-Pattern Sets[C]//Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, 2005. VLDB Endowment, 2005: 709 - 720.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部