期刊文献+

一种基于扩散映射的化工过程IWO-FCM数据挖掘算法 被引量:10

An IWO-FCM data mining algorithm of chemical industrial process based on diffusion mapping
下载PDF
导出
摘要 针对实际化工过程数据具有高维、非线性等特征而难以进行聚类分析的问题,提出一种基于扩散映射的IWO-FCM算法.该算法先利用扩散映射提取高维数据的低维流形特征,整合数据的局部特征使原始数据的几何信息得以保留,然后用IWO-FCM算法对低维流形数据进行聚类分析.试验通过对TE过程多个故障数据集进行测试,与获取数据低维特征后使用FCM算法相比,结果表明,IWO-FCM算法具有较强的稳定性和鲁棒性,比FCM算法具有更强的寻优能力和更好的收敛效果,聚类效果明显改善,能够快速有效地识别故障特征,验证了其有效性和优越性. Because there is difficulty in cluster analysis of practical chemical industrial process data with high dimension and nonlinearity, an IWO-FCM data mining algorithm was proposed based on diffusion mapping. In this algorithm, firstly the diffusion mapping was used to extract low-dimensional manifold characteristics from high-dimensional data, and the local characteristics of data was conformed so that geometric information of original data was retained. Then the IWO-FCM algorithm was used in cluster analysis of the low-dimensional manifold data. TE process multiple fault data set test was performed and the experimental results demonstrated that the IWO-FCM algorithm would have stronger stability and robustness and better optimal ability and convergence effect than FCM algorithm with extracted low-dimensional manifold characteristics. The clustering effect was improved obviously, and the proposed algorithm could be used to identify fault features quickly and effectively, confirming its validity and superiority.
出处 《兰州理工大学学报》 CAS 北大核心 2014年第3期101-105,共5页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(11112RJZA028) 甘肃省高校基本科研项目(1203ZTC061)
关键词 数据挖掘 扩散映射 聚类分析 IWO-FCM TE过程 data mining diffusion mapping cluster analysis IWO-FCM TE process
  • 相关文献

参考文献12

二级参考文献76

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:199
  • 2张雷,李人厚.人工免疫C-均值聚类算法[J].西安交通大学学报,2005,39(8):836-839. 被引量:17
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4杨峰,柳林,唐贤瑛,陈曦.基于免疫遗传算法的物流配送车辆路径优化问题研究[J].计算机应用与软件,2007,24(5):50-51. 被引量:7
  • 5肖刚,刘三阳,尹小艳.微分流形上的最优化算法[J].西安电子科技大学学报,2007,34(3):472-475. 被引量:7
  • 6Dinda P.Online prediction of the running time of tasks[C]//Proceedings of 10th IEEE International Symposium on High Performance Distributed Computing.San Francisco, CA, USA:IEEE Press, 2001 : 383-384.
  • 7Khotanzad A,Sadek N.Uhi-seale high-speed network traffic prediction using combination of neural networks[C]//Proceedings of the International Joint Conference on Neural Networks.Portland,OR, USA : IEEE Press, 2003 : 1071-1075.
  • 8de Castro L N,von Zuben F J.Learing and optimization using the clonal selection principle[J].IEEE Transaction on Evolutionary Computation, 2002,6( 3 ) : 239-251.
  • 9Partridge M, Calyo R. Fast Dimensionality Reduction and Simple PCA[J]. Intelligent Data Analysis, 1997, 2(3) : 292- 298.
  • 10Hyvrinen A. Survey on Independent Component Analysis[J]. Neural Computing Surveys, 1999, 2(4): 94-128.

共引文献100

同被引文献71

  • 1熊亚军,廖晓农,李梓铭,张小玲,孙兆彬,赵秀娟,赵普生,马小会,蒲维维.KNN数据挖掘算法在北京地区霾等级预报中的应用[J].气象,2015,41(1):98-104. 被引量:53
  • 2JARDINE A K S, LIN D, BANJEVIC D. A review on machinery di- agnostics and prognostics implementing eondition-based maintenance [ J]. Meehanieal Systems and Signal Processing, 2006, 20 (7) : 1483 - 1510.
  • 3LEE J, NI J, DJURDJANOVIC D. et al. Intelligent prognosties tools and e-maintenance [J]. Computers in Industry, 2006, 57 (6) : 476 -489.
  • 4KORN F, PAGEL B-U, FALOUTSOS C. On the "dimensionality curse" and the "self-similarity blessing" [ J]. IEEE Transactions on Knowledge and Data Engineering, 2001, 13(1) : 96 - 111.
  • 5HUANG D, QUAN Y, HE M, et al. Comparison of linear diserimi- nant analysis methods for the classification of cancer based on gene expression data [ J]. Journal of Experimental and Clinical Cancer Research, 2009, 28: 149.
  • 6CUI P, LI J, WANG G. Improved kernel principal component anal- ysis for fault detection [ J]. Expert Systems with Applications, 2008, 34(2) : 1210 - 1219.
  • 7BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality re- duct/on and data representation [ J]. Neural Computation, 2003, 15 (6) : 1373 - 1396.
  • 8COIFMAN R R, LAFON S. Diffusion maps [ J]. Applied and Com- putational Harmonic Analysis, 2006, 21(1): 5-30.
  • 9SINGER A, WU H-T. Vector diffusion maps and the connection Laplacian [ J]. Communications on Pure and Applied Mathematics, 2012, 65(8): 1067-1144.
  • 10YU K, JI L, ZHANG X. Kernel nearest neighbor algorithm [ J]. Neural Processing Letters, 2002, 15(2): 147 -156.

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部