期刊文献+

两类n+3阶n色的色唯一图 被引量:2

Two families of chromatically unique n-colorable graphs with n+3 order
下载PDF
导出
摘要 用Tn(a,b,c)表示完全图Kn及其外一边uw作一些边后得到图,使|N(u)∩V(Kn)|=a,|N(w)∩V(Kn)|=b,|N(u)∩N(w)∩V(Kn)|=c.Tn(a,b,c)的边uw剖分一个顶点v得到的图为Fn(a,b,c).研究Fn(a,b,c)的色性问题,并给出Fn(a,b,c)是色唯一图的两个充分条件. Let T. (a,b, c) be a graph obtained from the disjoint union graph K. U K2 (K2 =uw) by addting some edges between K. and Kz ,such that making |N(u)∩V(Kn) | =a, | N(w)∩V(Kn)| =b, | N(u) N N(w) NV(Kn)|=c. Fn(a,b,c) is the graph obtained from T.(a,b,c) by inserting the edge uw into a 2-degree vertex. The chromaticity of F. (a,b, c) is studied in this paper, and two sufficient conditions are given for the graph Fn (a,b,c) being chromatically unique.
作者 舒情
出处 《兰州理工大学学报》 CAS 北大核心 2014年第3期157-160,共4页 Journal of Lanzhou University of Technology
基金 江西省教育厅科技项目青年基金(GJJ10256)
关键词 n-色图 色临界图 色多项式 色等价 色唯一 n-colorable graph color-critical graph chromatic polynomial chromatically equivalent chromatically unique
  • 相关文献

参考文献8

  • 1BONDY J A,MURTY U S R. Graph theory with applications [M]. New York: American Elsevier Pub Co, 1976.
  • 2KOH K M, TEO K L. The search for chromatically unique graphs [J].Graphs and Combinatorics, 1990,6: 259-285.
  • 3DONG F M, KOH K M, TEO K L Chromatic polynomials and chromaticity of graphs [M]. Singapore: World Scientific, 2005.
  • 4DONG F M. The largest non-integer real zero of chromatic polynomials of graphs with fixed order [J]. Discrete Math, 2004,282:103-112.
  • 5龚和林,舒情.两类只含整数根的色多项式[J].纯粹数学与应用数学,2008,24(3):467-472. 被引量:4
  • 6DONG F M,TEO K L,KOH K M,et al. Non-chordal graphs having integral-root chromatie polynomials II [J]. Discrete Math, 2002,245 (1/2/3) :247-253.
  • 7PENG Y L. Chromatic uniqueness of a family of K4-homeo- morphs [J]. Discrete Mathematics, 2008,308:6132-6140.
  • 8龚和林,舒情.色临界图的最大度与色数的一个关系式[J].数学的实践与认识,2012,24(7):213-218. 被引量:1

二级参考文献9

  • 1Bondy J A, Murty U S R. Graph Theory with Applications [M]. London:Macmillan, 1976.
  • 2Koh K M, Teo K L. The search for chromatically unique graphs [J]. Graphs and Combinatorics, 1990, 6:259-285.
  • 3Dong F M, Teo K L, Koh K M, et al. Non-chordal graphs having integral-root chromatic polynomials II [J]. Discrete Math, 2002, 245:247-253.
  • 4Read R C. An introduction to chromatic polynomials [J]. Combin. Theory, 1968, 4:52-71.
  • 5Whitehead Jr E G. Chromaticity of two-trees [J]. Graph Theory, 1985, 9:279-284.
  • 6Vaderlind P. Chromaticity of triangulated graphs [J]. Graph Theory, 1988, 12:245-248.
  • 7Chao C Y, Li N Z, Xu S J. On q-trees [J]. Graph Theory, 1986, 10:129-136.
  • 8龚和林,舒情.两类只含整数根的色多项式[J].纯粹数学与应用数学,2008,24(3):467-472. 被引量:4
  • 9董峰明.广义轮图的色多项式唯一性[J].Journal of Mathematical Research and Exposition,1990,10(3):447-454. 被引量:11

共引文献3

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部