期刊文献+

基于双胞元的颗粒材料应力-应变关系研究 被引量:2

Stress-strain relationship of granular materials based on two cell systems
下载PDF
导出
摘要 基于细观力学,建立颗粒材料的宏观应力-应变与接触力、接触位移、枝矢量等细观量之间的关系。用改进的Voronoi-Delaunay法对颗粒材料进行几何和物理上划分,得到改进Bagi双胞元体系;以固体胞元为基础,运用牛顿第二定律和Gauss定理提出含有旋转矢量和重力的颗粒材料平均等效应力,避免了颗粒材料的准静态假设;在孔隙胞元区域内利用变形协调条件推导出含有孔隙面矢量等几何变量的颗粒材料平均等效应变。结合文献的二维颗粒材料宏观试验结果验证了双胞元平均等效应力-应变的正确性;在三维情形下,对比双胞元等效应变和最优拟合应变结果,同样验证了基于双胞元的颗粒材料应力-应变关系,因此,该颗粒材料应力-应变关系可以为数值模拟颗粒材料力学行为提供依据。 Based on granular mesomechanics, this paper sets up the relationship between the macro stress-strain and the mesoscopic quantities including the contact force, contact displacement and branch vector in granular materials. The method of improved Voronoi-Delaunay tessellation for granular materials in geometry and physics is further modified into two cell systems of Bagi. Taking solid cell systems as the basic elements, the average stress tensor that includes particle rotation vector and acceleration of gravity is derived based on Newton’s second law of motion and Gauss theorem. It avoids a static hypothesis. The average strain tensor expression including the void surface vector is derived based on the void cell with compatibility requirement. Two cell systems average equivalent stress-strain is correct combined with the literature of experimental resulting in two dimensions. Compared with two cell systems average equivalent strain and best fitting stress results under three dimensions, granular material stress-strain relationship based on the two cell systems is also validated. Therefore, the granular material stress-strain relationship of the two cell systems provides a theoretical basis for numerical simulation of mechanical properties of granular materials.
出处 《岩土力学》 EI CAS CSCD 北大核心 2014年第7期2071-2078,共8页 Rock and Soil Mechanics
基金 国家重点基础研究发展规划"973"项目(No.2013CB036405) 交通部交通运输建设科技项目(No.2011318775680) 中国科学院重点部署项目(No.KZZD-EW-05)
关键词 细观力学 双胞元 颗粒材料 应力-应变关系 mesomechanics two cell systems granular materials stress-strain relationship
  • 引文网络
  • 相关文献

参考文献23

  • 1秦建敏,张洪武.颗粒材料的微观临界状态理论模型[J].岩土力学,2010,31(12):3697-3703. 被引量:8
  • 2秦建敏,迟璐璐.颗粒材料剪胀性的微观力学分析[J].岩土力学,2013,34(5):1508-1514. 被引量:7
  • 3CHANG C S, HICHER P Y. An elasto-plastic model for granular materials with microstructural consideration[J]. International Journal of Solids and Structures, 2005, 42(14): 4258-4277.
  • 4NICOT F, DARVE F. A multi-scale approach to granular materials[J]. Mechanics of Materials, 2005, 37(9): 980 - 1006.
  • 5BAGI K. Stress and strain in granular assemblies[J]. Mechanics of Materials, 1996, 22(3): 165 - 177.
  • 6SATAKE M. Tensorial form definitions of discrete- mechanical quantities for granular assemblies[J]. International Journal of Solids and Structures, 2004, 41(21): 5775-5791.
  • 7BAGI K. Analysis of microstructural strain tensor for granular assemblies[J]. International Journal of Solids and Structures, 2006, 43(10): 3166-3184.
  • 8DURAN O, KRUYT N P, LUDING S. Analysis of three-dimensional micro-mechanical strain formulations for granular materials: Evaluation of accuracy[J]. International Journal of Solids and Structures, 2010, 47(2): 251-260.
  • 9FORT1N J, MILLET O, SAXCE G D. Construction of an averaged stress tensor for a granular medium[J].European Journal of Mechanics A/Solids, 2003, 22(4): 567- 582.
  • 10DE SAXCE C, FORTIN J, MILLET O. About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor[J]. Mechanics of Materials, 2004, 36(12): 1175 - 1184.

二级参考文献22

  • 1张洪武,秦建敏.基于非线性接触本构的颗粒材料离散元数值模拟[J].岩土工程学报,2006,28(11):1964-1969. 被引量:16
  • 2CASAGRANDE A. Characteristics of cohesionless soils affecting the stability of slopes and earth fills[J]. Journal of the Boston Society of Civil Engineers, 1936, 23:257 -276.
  • 3SCHOFIELD A N, WROTH P. Critical state soil mechanics[M]. London: McGraw Hill, 1968.
  • 4WU W, BAUER E, KOLYMBAS D. Hypoplastic constitutive model with critical state for granular materials[J]. Mechanics of Materials, 1996, 23: 45- 69.
  • 5GUDEHUS G. A comprehensive constitutive equation for granular materials[J]. Soils and Foundations, 1996, 36(1): 1-12.
  • 6BEEN K, JEFFERIES M G, HACHEY J. The critical state of sands[J]. Geotechnique, 1991, 41: 365-381.
  • 7ROTHENBURG L, KRUYT N P. Critical state and evolution of coordination number in simulated granular materials[J]. International Journal of Solids and Structures, 2004, 41: 5763-5774.
  • 8ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences, 1962, 269(1339): 500-527.
  • 9HORNE M R. The behaviour of an assembly of rotund, rigid cohesionless particles, part 2[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences, 1965, 286(1404): 79-97.
  • 10ODA M. On stress-dilatancy relation of sand in simple shear test[J]. Soils and Foundations, 1975, 15 (2): 17-29.

共引文献11

同被引文献15

引证文献2

二级引证文献9

;
使用帮助 返回顶部