期刊文献+

生长曲线模型的惩罚最小二乘估计 被引量:1

Penalized Least Squares Estimation of Growth Curve Model
下载PDF
导出
摘要 主要考虑了生长曲线模型中的参数矩阵的估计.首先基于Potthoff-Roy变换后的生长曲线模型,采用不同的惩罚函数:Hard Thresholding函数,LASSO,ENET,改进LASSO,SACD给出了参数矩阵的惩罚最小二乘估计.接着对不做变换的生长曲线模型,直接定义其惩罚最小二乘估计,基于Nelder-Mead法给出了估计的数值解算法.最后对提出的参数估计方法进行了数据模拟.结果表明自适应LASSO在估计方面效果比较好. This paper studied the estimation of parameter matrix in the growth curve model.Based on the Potthoff-Roy transform of the growth curve model,and by using different penalty functions:Hard Thresholding function,LASSO, ENET,LASSO,SACD,the penalized least estimation of parameter matrix was given.Then the penalized least squares estimation was defined directly on the growth curve model.The numerical solution algorithm for the estimation was proposed based on the Nelder-Mead method.Finally,the methods for the parameter estimation were simulated.The results show that the adaptive LASSO is better in the estimation results.
出处 《经济数学》 2014年第2期102-105,共4页 Journal of Quantitative Economics
基金 山西大同大学科研项目(2014K1) 国家统计局重点科研项目(2011LZ051)资助
关键词 惩罚最小二乘估计 HARD Thresholding函数 SCAD惩罚函数 改进LASSO penalized least squares estimator hard thresholding function penalty function SCAD avdaptive LASSO
  • 相关文献

参考文献9

  • 1R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems [J]. Biometrika, 1964, 51(3):313-326.
  • 2C L JACK. Tests and model selection for the general growth curve model[J]. Biometrics, 1991,47(1):147-159.
  • 3A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.
  • 4A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.
  • 5R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58 (1): 267-288.
  • 6H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2):301-320.
  • 7Hui ZOU. The adaptive Lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 476 (101) : 1419- 1426.
  • 8Jianqing FAN, Runze LI. Variable selection via nonconcave pe naliaed likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96) : 1348- 1360.
  • 9刘爱义.生长曲线模型的协变量选择与参数估计[J].数学学报(中文版),1994,37(3):362-372. 被引量:4

共引文献3

同被引文献10

  • 1刘爱义.生长曲线模型的协变量选择与参数估计[J].数学学报(中文版),1994,37(3):362-372. 被引量:4
  • 2Antoniadis A.Wavelets in statistics:A review[J].Journal of the Italian Statistical Society,1997,6(2):97-130.
  • 3Tibshirani R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,1994,58(1):267-288.
  • 4Bickel P,Ritov Y,Tsybakov A.Simultaneous analysis of lasso and Dantzig selector[J].Annals of Statistics,2009,37(4):1705-1732.
  • 5Van de Geer Sara A.High-dimensional generalized linear models and the lasso[J].Annals of Statistics,2008,36(2):614-645.
  • 6Van de Geer S,Bühlmann P.On the conditions used to prove oracle results for the lasso[J].Electronic Journal of Statistics,2009,3(2009):1360-1392.
  • 7Castro Y D.A remark on the lasso and the Dantzig selector[J].Statistics&Probability Letters,2013,83(1):304-314.
  • 8Rotthoff R F,Roy S N.A generalized multivariate analysis of variance model useful especially for growth curve problems[J].Biometrika,1964,51(3):313-326.
  • 9朱晓琳.生长曲线模型的惩罚最小二乘估计和变量选择[D].上海:华东师范大学,2013.
  • 10陈学华,尤进红,孙孝前.一般生长曲线模型中共同均值参数的线性估计的泛容许性[J].信阳师范学院学报(自然科学版),1998,11(3):224-229. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部